Geography Reference
In-Depth Information
z ( l,b )= A 1 (1 E 2 )sin b
1
.
E 2 sin 2 b
End of Lemma.
We have the proof that the normal field
( l, b ) is not a gradient field, in consequence an anholo-
nomic variable, to the reader. In terms of surface normal coordinates, the differential invariants
{
ν
I, II, III
}
take a simple form, namely
2 :=
I
d
μ
μ l d l +
μ b d b
| μ l d l +
μ b d b
,
(J.42)
II
∼−
d
μ |
d
ν
:=
μ l d l +
μ b d b
| ν
l d t +
ν
b d b
,
(J.43)
2 :=
III
d
ν
ν l d l +
ν b d b
| ν l d l + ν b d b
,
(J.44)
or
A 1 cos 2 b
A 1 (1
E 2 ) 2
2 =
1 − E 2 sin 2 b d l 2 +
(1 − E 2 sin 2 b ) 3 / 2 d b 2 ,
I
d
μ
(J.45)
A 1 cos 2 b
E 2 )
A 1 (1
1
d l 2 +
(1 − E 2 sin 2 b ) 3 / 2 d b 2 ,
II
d
μ |
d
ν
=
(J.46)
E 2 sin 2 b
2 =cos 2 b d l 2 +d b 2 .
III ∼ d ν
(J.47)
2
A 1 ,A 2
Corollary J.4 (
E
Gauss differential invariants).
The Gauss differential invariants {I,II,III} of the ellipsoid-of-revolution E
A 1 ,A 2 are characterized
by Gauss surface normal coordinates represented by ( J.42 ), ( J.43 ), and ( J.44 ). Especially, the
Gauss map N
A 1 ,A 2
2 has the spherical metric III .
E
S
End of Corollary.
J-22 Buchberger Algorithm of Forming a Constraint Minimum
Distance Mapping
The forward transformation of Gauss coordinates of an ellipsoid-of-revolution takes the form ( J.48 )
and ( J.49 ) illustrated by Fig. J.6 . The triplet { surface normal longitude, surface normal latitude,
surface normal height } describes the position of a point X ( L, B, H ) where the surface normal
height H ( L, B ) is a given function of longitude and latitude.
Box J.5 (Forward transformation of Gauss coordinates of an ellipsoid-of-revolution).
X ( L, B, H )=+ e 1
+ H ( L, B ) cos B cos L
A 1
1
E 2 sin 2 B
 
Search WWH ::




Custom Search