Geography Reference
In-Depth Information
The second operation. Use( J.33 ), the third equation:
z 2
sin 2 b =
(1
E 2 ) 2 ( x 2 + y 2 )+ z 2
(J.36)
z 2 / (1
E 2 )=(1
E 2 )[ x 2 + y 2 + z 2 / (1
E 2 ) 2 ]sin 2 b.
The third operation. Replace the terms in( J.34 )by( J.35 )and( J.36 ):
A 1 = x 2 + y 2 + z 2 / (1
E 2 )=[ x 2 + y 2 + z 2 / (1
E 2 ) 2 ](1
E 2 sin 2 b )
(J.37)
A 1
x 2 + y 2 + z 2 / (1 − E 2 ) 2 =
E 2 sin 2 b
1
x 2 + y 2 + z 2 / (1 − E 2 ) 2 = A 1 / 1 − E 2 sin 2 b.
The fourth operation. Solve ( J.33 )for {x, y, z} and replace the square root by ( J.37 ):
x = x 2 + y 2 + z 2 / (1
E 2 ) 2 cos b cos l,
y = x 2 + y 2 + z 2 / (1
E 2 ) 2 cos b sin l,
(J.38)
E 2 ) x 2 + y 2 + z 2 / (1
z =(1
E 2 ) 2 sin b.
The result is summarized in Lemma J.3 .
2
A 1 ,A 2
Lemma J.3 (
E
surface normal coordinates).
Let the surface normal vector ν ( l,b ) of an ellipsoid-of-revolution be the spherical image (Gauss
map) represented by ( J.25 ). Then ( J.39 )and( J.40 )holdand( J.41 ) is the parameter representation
of the ellipsoid-of-revolution E
A 1 ,A 2 in terms of surface normal coordinates , namely in terms of
surface normal longitude and surface normal latitude.
A 1
A 1
ν ( l,b )= e 1
1
cos b cos l + e 2
1
cos b sin l +
(J.39)
E 2 sin 2 b
E 2 sin 2 b
A 1 (1 − E 2 )
+ e 3
1
sin b,
E 2 sin 2 b
cos b cos l
cos b sin l
(1
A 1
x ( l,b )=[ e 1 , e 2 , e 3 ]
1
,
(J.40)
E 2 sin 2 b
E 2 )sin b
A 1 cos b cos l
A 1 cos b sin l
x ( l,b )=
1
,y ( l,b )=
1
,
(J.41)
E 2 sin 2 b
E 2 sin 2 b
Search WWH ::




Custom Search