Geography Reference
In-Depth Information
r rests upon the
existence theorem of Chern ( 1955a , b ), where it is shown that under rather mild certainty
assumptions, namely C 2 ,x , conformal coordinates (isometric coordinates, isothermal coordi-
nates) exist as solutions of the left or right Korn-Lichtenstein equations. Let us here also
refer to the following authors. Blaschke and Leichtweiß ( 1973 ), Boulware et al. ( 1970 ), Bour-
guignon ( 1970 ), Chen ( 1973 ), Chen and Yano ( 1973 ), Chern ( 1967a ), Chern et al. ( 1954 ), Do
Carmo et al. ( 1985 ), Eisenhart ( 1949 ), Euler ( 1755 , 1777a ), Ferrara et al. ( 1972 ), Finzi ( 1922 ),
Gauss ( 1822 , 1844 ), Goenneretal. ( 1994 ), Jacobi ( 1839 ), Heitz ( 1988 ), Klingenberg ( 1982 ), Koenig
and Weise ( 1951a ), Korn ( 1914 ), Krueger ( 1903 , 1922 ), Kuiper ( 1949 , 1950 ), Kulkarni ( 1969 ,
1972 ), Kulkarni and Pinkall ( 1988 ), Lafontaine ( 1988a , b ), de Lagrange ( 1781 ), Lancaster ( 1969 ,
1973 ), Lichtenstein ( 1911 , 1916 ), Liouville ( 1850 ), Markuschewitsch ( 1955 ), Mirsky ( 1960 ), Mis-
ner ( 1978 ), Mitra and Rao ( 1968 ), De Moor and Zha ( 1991 ), Moore ( 1977 ), Nishikawa ( 1974 ),
Ricci ( 1918 ), Riemann ( 1851 ), Samelson ( 1969 ), Schering ( 1857 ), Schmehl ( 1927 ), Schoen ( 1984 ),
Schouten ( 1921 ), Spivak ( 1979 ), Stein and Weiss ( 1968 ), Weber ( 1867 ), Weyl ( 1918 , 1921 ),
Wray ( 1974 ), Yano ( 1970 ), Yanushaushas ( 1982 ), Zadro and Carminelli ( 1966 ), and Zund ( 1987 ).
The proof of the operational theorem of conformal mapping M
l
M
Proof (sketch of the proof for the first step).
The special KL equations generate a conformal mapping, M l ( U, V | G l ) M l ( P,Q|Λ 2 I 2 ), namely
a conformal coordinate transformation from general left coordinates {U, V } to left conformal coor-
dinates {P,Q} . The left matrix of the metric, i.e. the matrix G l , is transformed to the left matrix
of the conformally flat metric , Λ 2 I 2 .Uptothe factor of conformality , Λ 2 ( P,Q ), the transformed
matrix of the metric is a unit matrix, I 2 . Here, we only outline how the integrability conditions
P UV = P VU and Q UV = Q VU are converted to the Laplace-Beltrami equation.
KL, 1st equation and 2nd equation, lead to
P UV =
, P VU =
G 12 Q U + G 11 Q V
G 22 Q U + G 12 Q V
G 11 G 22
G 11 G 22
.
(1.181)
G 12
G 12
V
U
G 11 Q V G 12 Q U
G 22 Q U G 12 Q V
1st : P UV = P VU
G 11 G 22 − G 12
=
G 11 G 22 − G 12
U
(1.182)
V
+ G 22 Q U
G 11 Q V
G 12 Q U
G 12 Q V
G 11 G 22
G 11 G 22
=0 .
G 12
G 12
V
U
The KL matrix equation is inverted to
Q U
Q V
=
G 12
P U
P V
,Q U = G 12 P U
1
G 11 G 22 − G 12
G 11 P V
G 11
G 11 G 22 − G 12
,
G 22
G 12
Q V = G 22 P U
G 12 P V
G 11 G 22
.
(1.183)
G 12
The inverted KL equations lead to
 
Search WWH ::




Custom Search