Geography Reference
In-Depth Information
(ii)
E 2 ) 1 / 4
(1 − E 2 cos 2 A ) 3 / 4 ×
A 1 (1
r =
sin B (1
E 2 cos 2 A )+ E 2 cos 2 B sin 2 A
×
E 2 )(1
2 E 2 cos 2 A + E 4 cos 2 A
E sin A
E sin B sin A
1
1
arcsin
+
(H.30)
2 E 2 c os 2 A + E 4 cos 2 A
+ (1
E 2 )(1
E 2 cos 2 A )+
1 / 2
2 E 2 cos 2 A + E 4 cos 2 A
E sin A
E sin A
+ 1
arcsin
1
,
2 E 2 cos 2 A + E 4 cos 2 A
(iii)
r =2 A 1 sin Δ
2
=
= A 1 2 1
cos Δ = A 1 2 1
sin B
(H.31)
(if E =0) .
End of Corollary.
The proof for the integrals is presented in Sect. H-3 .
H-13 The Equiareal Mapping In Terms Of Ellipsoidal Longitude,
Ellipsoidal Latitude
Λ }→{
A ,B }
into the mapping equations ( H.29 )-( H.31 )
which generate an equiareal mapping onto the transverse tangential plane according to ( H.21 )
and ( H.16 ), respectively, in particular ( H.14 ). Let us decompose ( H.30 ) term-wise, namely
We implement the transformation
{
r 2 ( A ,B )=
A 1 1
E 2
(1 − E 2 cos 2 A ) 3 / 2 ( t 1 + t 2 + t 3 + t 4 ) .
=
(H.32)
Λ }
has been performed in Sect. H-4 . Here, the result is presented in form of Lemma H.3 and Corol-
lary H.4 .
The elaborate computation of the factor and the four terms t 1 ,t 2 ,t 3 and t 4 as functions of
{
Lemma H.3 (Equiareal mapping of the biaxial ellipsoid onto the transverse plane).
 
Search WWH ::




Custom Search