Geography Reference
In-Depth Information
2 1 / 2
d t
d Φ
a 2 cos 2 t ( a 2 Λ 2 sin 2 t + b 2 cos 2 t )
G 11 G 22
a 4 Λ 2 sin 2 t cos 2 t
G 11 G 22
= μ ± μ 2
− γ,
Λ 1 Λ 2 =1
μ 2
( μ 2
γ )=1
γ =1
a 4 Λ 2 sin 2 t cos 2 t ] d t
d Φ
2
[ a 2 cos 2 t ( a 2 Λ 2 sin 2 t + b 2 cos 2 t )
= G 11 G 22
(G.25)
d Φ = G 11 G 22 = M ( Φ ) N ( Φ )cos Φ = A 1 (1
ab cos 2 t d t
cos Φ
(1 − E 2 sin 2 Φ ) 2 .
E 2 )
Let us collect the previous results in Corollary G.2 .
Corollary G.2 (Generalized Kepler equation, generalized Mollweide projection for the biaxial
ellipsoid).
Under the equiareal pseudo-cylindrical mapping equations ( G.26 ), where parallel circles are
mapped onto straight lines and meridians are mapped onto ellipses x 2 /a 2 ( Λ )+ y 2 /b 2 =1with
a ( Λ )= ,the generalized Kepler equation ( G.27 ) has to be solved.
x ( Λ, Φ )= cos t ( Φ ) ,y ( Φ )= b sin t ( Φ ) ,
(G.26)
ab cos 2 t d t
cos Φ
d Φ = A 1 (1
E 2 )
E 2 sin 2 Φ ) 2 .
(G.27)
(1
End of Corollary.
Next, let us integrate the generalized Kepler equation .
d Φ = A 1 (1
E 2 )
(1 − E 2 sin 2 Φ ) 2 , cos 2 t ( Φ )d t = A 1 (1
E 2 )
d t
1
cos 2 t ( Φ )
cos Φ
cos Φ
(1 − E 2 sin 2 Φ ) 2 d Φ.
(G.28)
ab
ab
The forward substitution x = E sin Φ leads to ( G.29 ).
t
x
cos 2 t d t = A 1 (1
E 2 )
Eab
1
(1 − x 2 ) 2 d x
(G.29)
0
0
x 2 ) +artanh x .
1
2 t + 1
4 sin 2 t = A 1 (1
E 2 )
x
abE
2(1
The backward substitution finally leads to the integrated generalized Kepler equations ( G.30 ).
 
Search WWH ::




Custom Search