Geography Reference
In-Depth Information
1+2( U 1 E l U 2 ) / ( U 1 G l U 2 )
1+2( U T
1 G l U 1 ) 1+2( U T
Q l =
,
1 E l U 1 ) / ( U T
2 E l U 2 ) / ( U T
2 G l U 2 )
1+2( u 1 E r u 2 ) / ( u 1 G r u 2 )
1+2( u 1 E r u 1 ) / ( u 1 G r u 1 ) 1+2( u 2 E r u 2 ) / ( u 2 G r u 2 )
Q r =
,
(1.148)
V 1 F l C l F l V 2
1 F r C r F r ˙
υ
˙
υ
2
cos Ψ l =
=cos Ψ r =
=
V 1 || F l C l F l ||
V 2 || F l C l F l
||
υ 1 || F r C r F r ||
˙
υ 2 || F r C r F r
˙
||
(1.149)
V T
1 diag( Λ 1 2 ) V 2
T
= ˙
υ
υ 2
|| υ 1 || D λ || υ 2 || D λ
1 diag( λ 1 2 ) ˙
,
=
.
V 1 || D Λ ||
V 2 || D Λ
||
The following Example 1.9 and the following Box 1.23 illustrate this third multiplicative measure
of deformation.
Example 1.9 (Relative angular shear).
Again, we refer to Example 1.3 , and to Example 1.8 in addition, where the isoparametric mapping
f = id from an ellipsoid-of-revolution
2
2
A 1 ,A 1 ,A 2
2
2
r with respect to the
Cauchy-Green deformation tensor and the absolute angular shear has been analyzed. Here, we
aim at relative angular shear. First, by means of Box 1.23 , we are going to compute cos Ψ l and
cos Ψ r from the two sets of left and right curves, namely from the left Cauchy-Green tensor the
right Cauchy-Green tensor. Second, we derive relative angular shear: Q l = Q r =1.
M
l =
E
to a sphere
M
e =
S
End of Example.
Box 1.23 (Relative angular shear).
Left Cauchy-Green matrix:
Right Cauchy-Green matrix:
C r = A 1 cos 2 φ
.
C l = r 2 cos 2 Φ 0
r 2 .
0
1 −E 2 sin 2 φ
(1.150)
E 2 ) 2
(1 −E 2 sin 2 φ ) 3
A 1
0
(1
0
Left angular shear:
Right angular shear:
U 1 C l U 2
u 1 C r u 2
u 1 C r || u 2 C r
cos Ψ l =
,
cos Ψ r =
,
U 1
U 2
C l ||
C l
cos Ψ l [1 , 0]C r 0
=0 ,
cos Ψ r [1 , 0]C l 0
=0 ,
1
1
π
2 .
π
2 .
cos Ψ l =0
Ψ l =
±
cos Ψ r =0
Ψ r =
±
(1.151)
 
Search WWH ::




Custom Search