Geography Reference
In-Depth Information
π
2 ,
B ( Q ) = 2 arctan exp Q
(D.60)
N→∞
arctan u = π
1
u +
1
3 u 3
1
5 u 5 +
1
2 r +1
1
u 2 r +1 =
1) r +1
2
(
r =3
N→∞
= π
( 1) r +1 exp[ (2 r +1) Q ]
2 r +1
2 +
.
(D.61)
r =0
We are thus led to the series representation of the boundary condition, for example, to ( D.62 )
and ( D.63 ), where we have eliminateed the coecients
{
A m ,B m }
by the postulate q
→∞
,
{
x, y
}
finite.
mq )= r π
,
M→∞
N→∞
1) n +1 exp[
(2 n +1) Q ]
2 n +1
x
{
q,p =0
}
= x 0 +
C m exp(
2
2
(
(D.62)
m =1
n =0
M→∞
y
{
q,p =0
}
= y 0 +
D m exp(
mq )=0 .
(D.63)
m =1
Once we compare the coecients, we find ( D.64 ). Finally, we find the local representation of the
transverse Mercator projection in terms of isometric longitude and latitude p/q ,namely( D.65 ),
and in terms of longitude and latitude
{
l = L
L 0 ,B
}
,namely( D.66 ).
x 0 = r π
2 ,y 0 =0 ,
C 2 n =0 ,C 2 n +1 = r 2(
1) n +1
2 n +1
,D m =0 ,
(D.64)
N→∞
x ( q,p )= r π
1
2 n +1 exp[
1) n +1
2 +2 r
(
(2 n +1) q ]cos(2 n +1) p,
(D.65)
n =0
N→∞
1
2 n +1 exp[
1) n
y ( q,p )=2 r
(
(2 n +1) q ]sin(2 n +1) p,
n =0
N→∞
x ( B,l )= r π
1
2 n +1
cos(2 n +1) l
[tan( 4
1) n +1
2 +2 r
(
2 )] 2 n +1 ,
(D.66)
B
n =0
N→∞
sin(2 n +1) l
[tan( 4
1
2 n +1
1) n
y ( B,l )=2 r
(
2 )] 2 n +1 .
B
n =0
End of Example.
Search WWH ::




Custom Search