Geography Reference
In-Depth Information
Superposition of base functions gives the setups ( D.42 )and( D.43 ). The d'Alembert-Euler equa-
tions (Cauchy-Riemann equations) x p = y q and x q =
y p then are specified by ( D.44 )and( D.45 ).
M
x ( q,p )=
[ I m cosh mq cos mp + J m cosh mq sin mp +
(D.42)
m =1
+ K m sinh mq cos mp + L m sinh mq sin mp ]+ x 0 ,
M
[ I m cosh m q cos m p + J m cosh m q sin m p +
y ( q,p )=
(D.43)
m =1
+ K m sinh m q cos m p + L m sinh m q sin m p ]+ y 0 ,
M
x q =
[ mI m sinh mq cos mp + mJ m sinh mq sin mp +
(D.44)
m =1
+ mK m cosh mq cos mp + mL m cosh mq sin mp ] ,
M
[ −m I m cosh m q sin m p + m J m cosh m q cos m p−
y p =
m =1
m K m sinh m q sin m p + m L m sinh m q cos m p ]
(D.45)
I m = L m ,J m = −K m ,K m = J m ,L m = −I m .
End of Proof.
r , transverse Mercator projection).
Example D.1 (
S
2
r
based on the fundamental solution ( D.15 ), ( D.16 ), ( D.28 ), and ( D.29 ) of the d'Alembert-Euler
equationsc (Cauchy-Riemann equations). Let us depart from the equidistant mapping of the L 0
meta-equator, namely the boundary condition
As an example, let us construct the transverse Mercator projection locally for the sphere
S
x = x
{
q ( L = L 0 ,B ) ,p ( L = L 0 ,B )
}
= rB,y = y
{
q ( L = L 0 ,B ) ,p ( L = L 0 ,B )
}
=0 .
(D.46)
There remains the task to express the boundary conditions in the function space ( D.15 )
and ( D.16 ). There are two ways in solving this problem.
First choice.
A Taylor series expansion of B ( Q ) around B 0 ( Q 0 )leads directly to
B = arcsin(tanh Q ) ,
B = B 0 + ΔB = B 0 + b ∀ b := ΔB ,
Q = Q 0 + ΔQ = Q 0 + q ∀ q := ΔQ
(D.47)
N→∞
b = d 1 q + d 2 q 2 +
d r q r
r =3
Search WWH ::




Custom Search