Geography Reference
In-Depth Information
A:= 01
,
10
(D.31)
H 1 := α 2
, H 2 :=
.
β 2
β 2
α 2
β 2
α 2
α 2
β 2
Lemma D.3 (Fundamental solution of the d'Alembert-Euler equations subject to integrability
conditions of harmonicity, separation of variables).
A fundamental solution of the d'Alembert-Euler equations (Cauchy-Riemann equations) subject
to the integrability conditions of harmonicity type in the class of separation of variables is
M
x ( q,p )= x 0 +
[ A m exp( mq )+ C m exp( −mq )] cos mp +
m =1
(D.32)
M
+
[ B m exp( mq )+ D m exp(
mq )] sin mp ,
m =1
M
y ( q,p )= y 0 +
[ B m exp( mq )+ D m exp(
mq )] cos mp +
m =1
(D.33)
M
+
[
A m exp( mq )+ C m exp(
mq )] sin mp .
m =1
End of Lemma.
Proof.
By separation-of-variables ,namelybyusing x ( q,p )= f ( q ) g ( p )and y ( q,p )= F ( q ) G ( p ), the vec-
torial Laplace-Beltrami equation leads to ( D.34 ) and to similar equations for F ( q )and G ( p ).
f
f
+ g
g
f
f
g
g
=: m 2
f = m 2 f
=0
=
(D.34)
g =
m 2 g
f = c m exp( mq )+ d m exp(
mq )
g = a m cos mp + b m sin mp .
Superposition of base functions gives the setups ( D.35 )and( D.36 ). The d'Alembert-Euler equa-
tions (Cauchy-Riemann equations) x p = y q and x q =
y p then are specified by ( D.37 )and( D.38 ).
 
Search WWH ::




Custom Search