Geography Reference
In-Depth Information
( r
2)( r
1)r
P r, 2 ( q,p )= rq r− 1 p
q r− 3 p 3 +
···
,
(D.23)
3
2
1) s +1 r
q r− (2 s− 1) p 2 s− 1 .
[ r +1
2
]
P r, 2 ( q,p )=
(
(D.24)
2 s − 1
s =1
[ 2 ] denotes the largest natural number
r
r +1
2 ,
respectively. In summarizing, the general solution of the first Laplace-Beltrami equation is given
by ( D.25 ).
2 , [( r +1) / 2] the largest natural number
1) s r
q r− 2 s p 2 s +
[ 2
[ r +1
2
]
]
N
N
1) s +1
x = α 0 + α 1 q + β 1 p +
α r
(
β r
(
2 s
r =2
s =0
r =2
s =1
r
2 s
q r− 2 s +1 p 2 s− 1 .
(D.25)
1
Next, we implement the terms x = P r, 1 ( q,p )and x = P r, 2 ( q,p ) in the d'Alembert-Euler equa-
tions (Cauchy-Riemann equations) ( D.26 ). Obviously, there hold the polynomial relations ( D.27 ).
( 1) s ( r − 2 s ) r
q r− 2 s− 1 p 2 s =
( 1) s ( r − 2 s ) r
[ 2
[ r + 2 1]
]
∂P r, 1
∂q
=
2 s
2 s
s =0
s =0
q r− 2 s− 1 p 2 s ,
1) s 2 s r
q r− 2 s p 2 s− 1 =
1) s 2 s r
q r− 2 s p 2 s− 1 ,
[ 2
[ 2
]
]
∂P r, 1
∂p
=
(
(
2 s
2 s
s =0
s =1
( 1) s +1 ( r − 2 s +1) r
q r− 2 s p 2 s− 1 =
( 1) s +1 2 s r
[ r +1
2
[ 2
]
]
∂P r, 2
∂q
=
2 s
1
2 s
s =1
s =1
q r− 2 s p 2 s− 1 ,
(D.26)
1) r
q r− 2 s +1 p 2 s− 2 =
2 s ) r
[ r +1
2
[ r +1
2
]
] 1
∂P r, 2
∂p
1) s ( r
1) s +1 (2 s
=
(
(
2 s − 1
2 s
s =1
s =0
q r− 2 s 1 p 2 s ,
∂P r, 1
∂q
= ∂P r, 2
∂P r, 1
∂p
∂P r, 2
∂q
∂p ,
=
.
(D.27)
The general solution of the d'Alembert-Euler equations (Cauchy-Riemann equations) subject
to the integrability conditions of the harmonicity type thus can be represented by
 
Search WWH ::




Custom Search