Geography Reference
In-Depth Information
r 0 ,bymeansof( 23.155 ), ( 23.156 )wemayuse( 0 x, 0 y ) as a zero order approximation of
( x, y ) C .With( 0 x, 0 y ) as input we start immediately the Newton iteration up to a fixed point.
For easy reference we collect the result in
( x, y ) S
Lemma 23.3 (minimal distance mapping of a point close to the clothoid).
2 Be a point close to the clothoid C . The point ( x, y ) C is at minimal Euclidean
distance to X x 2
Let ( X,Y ) R
to ( X,Y ) R
2 if
( x, y ) X x 2
2 , ( x, y ) C
=min | ( X,Y ) R
(23.164)
The Lagrangean 2 L ( x, y ( x )) := ( X − x ) 2 +( Y − y ) 2 subject to
y= J
x 0 ) j
j =0 c j ( x
(23.165)
with the clothoidal coecients c j given by Table 23.6 is minimal, if
( i ) the necessary condition
L x := ∂L
∂x ( x, y ( x )) = 0 or
x 0 ) 2 + f 3 ( x
x 0 ) 3 + f 4 ( x
x 0 ) 4
f ( x
x 0 )= f 0 + f 1 ( x
x 0 )+ f 2 ( x
x 0 ) 5 + f 6 ( x
x 0 ) 6 + f 7 ( x
x 0 ) 7 +
+ f 5 ( x
(23.166)
O ( x
x 0 ) 8 =0
with coe cients f n givenuptoorder8inTable 23.7 and
( ii ) the su ciency condition
L xx := 2 L
∂x 2 ( x, y ( x )) > 0or
x 0 ) 2 +4 f 4 ( x
x 0 ) 3 +5 f 5 ( x
x 0 ) 4 +
f ( x
x 0 )= f 1 +2 f 2 ( x
x 0 )+3 f 3 ( x
6 f 6 ( x − x 0 ) 5 +7 f 7 ( x − x 0 ) 6 + O ( x − x 0 ) 7 > 0
(23.167)
are fulfilled. Since the curvature κ C ( x, y ( x )) > 0for all points ( x, y ) C of the clothoid is positive,
namely C is a convex curve, there is always one minimal distance mapping ( X,Y ) ( x, y ) C .
End of Lemma.
Corollary 23.8 (minimal distance mapping of a point close to the clothoid, Newton iteration).
Let ( 0 x, 0 y ) be a zero order approximation of the minimal distance mapping R
2
( X,Y )
( x, y )
C
. Then a standard Newton iteration is
f ( 0 x )
f ( 0 x )
1 x = 0 x
(23.168)
...
f ( n 1 x )
f ( n− 1 x )
n x = n− 1 x
(23.169)
 
Search WWH ::




Custom Search