Geography Reference
In-Depth Information
by J l =J r . Eighth, we have computed the left eigenvalues of the left Euler-Lagrange defor-
mation tensor. The degenerate distortion ellipse/hyperbola of the right Euler-Lagrange matrix
is finally illustrated by Fig. 1.17 .
End of Solution (the first and the second problem).
2
2
O
Box 1.18 (Orthogonal projection
S
R + onto
P
, Cartesian coordinates, the first problem and
the second problem).
Right Cauchy-Green matrix in Cartesian coordinates:
R 2
x 2 .
1
y 2
xy
C r =
(1.122)
R 2
xy
R 2
( x 2 + y 2 )
Right Euler-Lagrange matrix in Cartesian coordinates:
x 2 xy
xy y 2 .
1
2
1
2E r =I 2
C r , E r =
(1.123)
R 2
( x 2 + y 2 )
Right eigenvalues:
2 κ i = λ i 1 ∀i ∈{ 1 , 2 },
R 2
x 2 + y 2
( x 2 + y 2 ) 2 =1 1 = 1
λ 1 =
( x 2 + y 2 ) 2 =0 .
(1.124)
R 2
2
R 2
Right Euler-Lagrange tensor:
E r =
x 2
xy
1
2 e 1
1
2 ( e 2
=
e 1
( x 2 + y 2 )
e 2 + e 2
e 1 )
R 2
R 2
( x 2 + y 2 )
1
2 e 2 e 2
y 2
( x 2 + y 2 ) =
R 2
x 2
1
2 e 1
xy
=
e 1
( x 2 + y 2 )
e 1
e 2
R 2
R 2
( x 2 + y 2 )
y 2
1
2 e 2
e 2
(1.125)
R 2
( x 2 + y 2 )
subject to
e ν := 1
e μ
2 ( e μ
e ν
e ν
e μ ) .
2
2
O
Box 1.19 (Orthogonal projection
S
R + onto
P
, polar coordinates, the first and the second
problem).
Right Cauchy-Green matrix in polar coordinates:
r 2 = x 2 + y 2 = X 2 + Y 2 = R 2 cos 2 Φ,
 
Search WWH ::




Custom Search