Geography Reference
In-Depth Information
6 o
9 o
12 o
15 o
56 o
56 o
55 o
55 o
54 o
54 o
53 o
53 o
52 o
52 o
51 o
51 o
50 o
50 o
49 o
49 o
48 o
48 o
47 o
47 o
Harmonic Map with Tissot Ellipses
B=[46 , 56 ], Bo=51
o
o
o
o
o
(7.5 , 10.5 );(10.5 , 13.5 );(13.5 , 16.5 )
o
o
o
o
o
o
L=[(4.5 , 7.5 );
]
46 o
46 o
Equidistant Meridian
6
o ,
9 o ,
12
o ,
15
o
6 o
9 o
12 o
15 o
[46 , +56 ]; [4 . 5 , 7 . 5 ]or[7 . 5 , 10 . 5 ] or [10 . 5 , 13 . 5 ] or
Fig. 22.5. Special harmonic map of the region ( B,L )
∈{
[13 . 5 , 16 . 5 ]
6 , 9 , 12 , 15 }
,B 0 =51
}
L 0 ∈{
or pushforward ( x, y )in I l = dS 2 = N 2 (cos B ) 2 dL 2 + M 2 dB 2 by means of the right Jacobi map
J r such that the right Cauchy-Green deformation tensor C r = J r G l J r is generated.
The matrix pairs
are subject of simultaneous diagonalization. Table 22.2
introduces the computation of the left Cauchy-Green deformation tensor C l :Table 22.26 out-
lines the derivation of left eigenvalues Λ 1 , 2 by means of solving the general characteristic equation
|
{
G l , C l
}
,
{
C r , G r
}
Λ l G l
=0.Table 22.27 summarizes the computation of the left eigenspace analysis by
the derivation of left eigenvectors
C l
|
constituting the left Frobenius matrix F l .Incon-
trast, Table 22.28 starts from the computation of the right Cauchy-Green deformation tensor C l :
Table 22.29 aims at deriving the right eigenvalues λ 1 , 2 by means of solving the general character-
istic equation
{
F 1 l , F 2 l
}
Λ r G r
= 0. We complete the right eigenspace analysis by deriving the right
eigenvector { F 1 r , F 2 r } which constitute the right Frobenius matrix F r .
|
C r
|
Search WWH ::




Custom Search