Geography Reference
In-Depth Information
Table 22.16 Harmonic map, “ Northing ”, first boundary value problem, q representation
y = η ( q, 0) = γ 0 + γ 1 q + γ 2 q 2 + γ 3 q 3 + γ 4 q 4 + O q 5
(22.97)
symmetry
η ( q,l )= η ( q,
l )
(22.98)
γ 0 + γ 1 q + δ 1 l + γ 2 q 2
l 2 +2 δ 2 ql + γ 3 q 3
3 ql 2 + δ 3 3 q 2 l
l 3
+ γ 4 q 4
6 q 2 l 2 + l 4 + δ 4 4 q 3 l
4 ql 3 + O (5) =
δ 1 l + γ 2 q 2
l 2
2 δ 2 ql + γ 3 q 3
3 ql 2
δ 3 3 q 2 l
l 3
γ 0 + γ 1 q
+ γ 4 q 4
6 q 2 l 2 + l 4
δ 4 4 q 3 l
4 ql 3 + O (5)
δ 1 =0 2 =0 3 =0 4 =0 etc.
(22.99)
y ( q,l )= γ 0 + γ 1 q + γ 2 q 2
l 2 + γ 3 q 3
3 ql 2 +
1) s r
2 s
q r− 2 s l 2 s
+ r =4
γ r [ r/ 2]
(22.100)
(
s =0
l := L
L 0
(22.101)
Q
Q 0 = lamQ ( B )
lamQ ( B 0 )=: q
(22.102)
Taylor ser ies
q = N
η =1
q η b η
(22.103)
q 2 = N
r 1 ,r 2 =1
q r 1 q r 2 b r 1 b r 2 ,q r 1 r 2 := q r 1 q r 2
(22.104)
q 3 = N
r 1 ,r 2 ,r 3 =1
q r 1 q r 2 q r 3 b r 1 b r 2 b r 3 ,q r 1 r 2 r 3 := q r 1 q r 2 q r 3
(22.105)
derivatives
q 1 := 1!
dQ
dB ( B 0 )= 1!
Q ( B 0 )
d 2 Q
q 2 := 2!
dB 2 ( B 0 )= 2!
Q ( B 0 )
(22.106)
d 3 Q
q 3 := 3!
dB 3 ( B 0 )= 3!
Q ( B 0 )
d r Q
q r := 1
r !
dB r ( B 0 )= 1
r ! Q ( r ) ( B 0 )
(22.107)
for the “ Eastern function x = ξ ( q,l ). In terms of the fundamental solution of Laplace-
Beltrami equation presented to you in Table 22.11 we have been able to determine the coe-
cients β 1 and
{
α 0 =0 2 =0 2 =0 3 =0 4 =0 5 =0 6 =0 ,etc.
}
, but not the coecients
{
α 1 2 3 4 5 6 7 8 ,etc .
.
How to determine the coecients
}
{
α 1 2 3 4 5 6 7 8 ,etc .
}
?
 
Search WWH ::




Custom Search