Geography Reference
In-Depth Information
M r :
{ R 3 : δ ij }
{ R 3 : δ ij }
M r )”
Table 22.2 Metric topology of the right manifold
topology of
( right manifold
R 2
X = e 1 x + e 2 y
(22.22)
{ R 3 ij }
dS 2 = δ 11 dx 2 + δ 22 dy 2 = dx 2 + dy 2
rightmetricof
(22.23)
δ 11 := X
= 1
X
∂x
∂x |
(22.24)
δ 22 := X
= 1
X
∂y
∂y |
(22.25)
δ 12 := X
= 0
X
∂y
∂x |
(22.26)
left Cauchy-Green deformation tensor
Jacobi map ” (pullback operation)
dx
dy
= x L x B
y L y B
dL
dB
= J l dL
dB
(22.27)
ds 2 = dx 2 + dy 2 =( x L dL + x B dB ) 2 +( y L dL + y B dB ) 2
= x L + y L dL 2 + x 2 B + y B dB 2 +2( x L y B + x B y L ) dLdB
(22.28)
dS 2 = dL dB J l J l dL
(22.29)
dB
C l := J l J l
(22.30)
dS 2 = dL dB x L + y L
dL
dB
x L x B + y L y B
(22.31)
x 2 B + y B
x L x B + y L y B
C l = x L + y L
x L x B + y L y B
∈ R 2 × 2
(22.32)
x 2 B + y B
x L x B + y L y B
dS 2 = dL dB C l dL
dB
(22.33)
2
r , namely the plane, have been identified by small
letters . Equations ( 22.7 ), ( 22.9 )and( 22.10 ) express the coordinates of the metric tensor in Gauss
ellipsoidal coordinates ( L, B ), while Eq.( 22.8 )asthe left Cauchy-Green deformation tensor refers
to the metric of the plane as already outlined, originally described by Cartesian coordinates ( x, y ).
Equation ( 22.11 ) is a representation of the surface element of
all quantities relating to the right manifold
M
A 1 ,A 2
in terms of Gauss ellipsoidal
coordinates ( L, B ). Equation ( 22.5 ) defines harmonicity of the mapping functions x ( L, B ) ,y ( L, B ) ,
namely in terms of the Laplace Beltrami operator in Gauss ellipsoidal coordinates ( L, B ).
The Laplace Beltrami operator as a generator of harmonic maps takes a much simpler from if
we use isometric coordinates. {L, Q} also called conformal, iso-thermal or Mercator coordinates
in Table 22.3 , namely as transformations {L, B}→{L, Q} by Eqs. ( 22.34 )-( 22.36 ). The “ln
tan ” function of Eq.( 22.36 )isreferredtoasthe Lambert function or isometric latitude. The
placement vector X
E
3 is given in terms of isometric longitude L —identical to
Gauss surface normal longitude —and isometric latitude Q by Eq. ( 22.37 ). Finally, Eqs.( 22.38 )
and ( 22.39 ) summarize the conformal representation of the metric tensor in terms of isometric
coordinates ( L, Q )of Mercator type, Λ ( Q ) is called the left factor of conformality . Finally let us
specialize the first theorem by means of relative isometric coordinates l := L
E
A 1 ,A 2 R
L 0 ,q := Q
Q 0
relative to a Taylor point ( L 0 ,Q 0 )) inside the Reference Meridian Strip.
 
Search WWH ::




Custom Search