Geography Reference
In-Depth Information
Table 21.11 Algorithm for computing coordinates of the universal Mercator projection as a function of global
coordinates (GPS, GLONASS) and extended datum parameters
Step one.
Collect global coordinates of type
by means of GPS, GLONASS,
or other satellite positioning system.
Step two.
{
Λ,Φ,H
}
Collect the elements of a curvilinear datum transformation,
namely three translation parameters
{
t x ,t y ,t z }
, three rotation parameters
{
α, β, γ
}
,
δa,δe 2 , =2 eδe
one scale parameter s , and two ellipsoidal form parameters
{
}
.
Step three.
Compute x ( Λ )bymeansof( 21.99 ) as Easting (“Rechswert”).
Step four.
Compute y ( Φ )bymeansof( 21.100 ) as Northing (“Hochwert”).
2
a 1 ,a 2
to a local ellipsoid-of-revolution
E
is called a universal Mercator proje ction if ( 2 1.94 )holds,
where a 1 denotes the semi-major axis, a 2 the semi-minor axis, and e = 1
a 2 /a 1 the relative
2
a 1 ,a 2
eccentricity of
E
.
x = a 1 λ,
y = a 1 ln tan π
e/ 2 .
1
4 + ϕ
e sin ϕ
1+ e sin ϕ
(21.94)
2
End of Definition.
In order to transform Mercator coordinates which are given in a global datum with respect to
the ellipsoid-of-revolution
into Mercator coordinates which are given in a local datum with
respect to the ellipsoid-of-revolution E
E
A 1 ,A 2
a 1 ,a 2 , we take advantage of the Taylor expansion of second
order, namely
a 1 = A 1 + δa, e = E + δe,
(21.95)
λ = Λ + δΛ, ϕ = Φ + δΦ
so that
x ( λ, a 1 )= x ( Λ + δΛ,Φ + δΦ,A 1 + δA )= A 1 Λ + Λδa + A 1 δΛ + δAδΛ +O 3 x ,
(21.96)
x := x 0 + x 1 + x 2 + x 3 +O 3 x
and
y ( ϕ, a 1 ,e )=
= y ( Φ + δΦ,A 1 + δa,E + δe )=
= A 1 ln tan π
E/ 2 +
1
4 + Φ
E sin Φ
1+ E sin Φ
2
+ln tan π
E/ 2 δa + A 1 1
1 E sin Φ
1+ E sin Φ
2 ln 1 E sin Φ
4 + Φ
2
1+ E sin Φ
 
Search WWH ::




Custom Search