Geography Reference
In-Depth Information
Lemma 21.1 (Local conformal coordinates are transformed into global conformal coordinates of
type Gauss-Krueger or UTM).
Let there be given conformal coordinates
{
x, y
}
of type Gauss-Krueger or UTM of a local ref-
a 1 ,a 2
erence ellipsoid-of-revolution
. Then, under a curvilinear datum transformation ( 21.67 )and
( 21.66 ) represented by three parameters
E
{
t x ,t y ,t z
}
of translation, three parameters
{
α,β,γ
}
of
rotation, and one scale parameter s , the conformal coordinates
{
X,Y
}
of type Gauss-Krueger or
UTM of a global reference ellipsoid-of-revolution E
A 1 A 2
are represented by the bivariate polyno-
mial
x mn x
ρ
m
X = X ( x, y, ρ, t x ,t y ,t z ,α,β,γ,s,δE 2 )= ρ
m =0 ,n =0 ,m + n = N
y
ρ − y 00 n
,
y mn x
m
Y = Y ( x, y, ρ, t x ,t y ,t z ,α,β,γ,s,δE 2 )= ρ
ρ
m =0 ,n =0 ,m + n = N
y
ρ
y 00 n
.
(21.85)
X and Y are given by ( 21.82 )inBox 21.25 up to order three. The coecients x mn and y mn ,
which are given in Boxes 21.26 and 21.27 , are product sums of the coecients U MN and V MN of
Boxes 21.20 and 21.21 and of the coecients l mn and b mn of Boxes 21.23 and 21.24 . y 00 indicates
the arc length of the meridian-of-reference l 0 in the interval [0 ,b 0 ].
End of Lemma.
21-42 Inverse Transformation of Global Conformal into Local
Conformal Coordinates
The software attached to a satellite Global Positioning System (GPS) allows the direct conversion
of global ellipsoidal coordinates {L − L 0 ,B− B 0 } into global conformal coordinates {X,Y } of
type Gauss-Krueger or UTM, namely with reference to a global reference ellipsoid-of-revolution
E
A 1 ,A 2
, i.e. WGS 84. In order to locate an observer with first hand information of global conformal
coordinates {X,Y } of type Gauss-Krueger or UTM in a Gauss-Krueger or UTM chart given in a
local reference system (regional, National, European), we are left with the problem of transforming
global conformal coordinates {X,Y } into local conformal coordinates of type Gauss-Krueger or
UTM, the chart coordinates. The problem is solved by the inverse representation of the bivariate
polynomials
: such bivariate polynomials are inverted by means of the GKS
algorithm presented by Grafarend ( 1996 ). Box 21.28 contains the inverse bivariate polynomials
{
{
X ( x, y ) ,Y ( x, y )
}
with respect to the coecients of Boxes 21.29 and 21.30 , where the datum
parameters are included in the coecients
x ( X,Y ) ,y ( X,Y )
}
x MN ,y MN
{
}
.
Search WWH ::




Custom Search