Geography Reference
In-Depth Information
e 2 sin 2 b 0 ) 5 / 2 (1
5 e 2 sin 2 b 0 +4 e 2 sin 4 b 0 )
b 21 =
(1
,
2 a 1 (1
e 2 ) 2 cos 2 b 0
e 2 sin 2 b 0 ) 5 / 2 (1
2sin 2 b 0
5 e 2 sin 2 b 0 +6 e 2 sin 4 b 0 )
b 03 =
e 2 (1
.
2 a 1 (1 − e 2 ) 3
As soon as we implement ( 21.79 )into( 21.70 ), we gain the final transformation of Cartesian con-
formal coordinates
}
in a global frame of reference. Indeed, via the coecients of the bivariate polynomials ( 21.82 )of
Box 21.25 listed in Boxes 21.26 and 21.27 , the final transformation depends on the parameters
of a curvilinear datum transformation, namely three parameters
{
x, y
}
in a local frame of reference into Cartesian conformal coordinates
{
X,Y
of translation, three
parameters {α,β,γ} of rotation, one scale parameter s and the change of the form parameter
δE 2 = E 2
{
t x ,t y ,t z
}
e 2 . The bivariate polynomial representation ( 21.82 ) is given up to order three due to
the limited space in printing the lengthy coe cients in Boxes 21.26 and 21.27 . Indeed, the final
transformation X ( x, y, ρ, t x ,t y ,t z ,α,β,γ,s,δE 2 ), Y ( x, y, p, t x ,t y ,t z ,α,β,γ,s,δE 2 ) highlights the
key result of a datum transformation from local conformal coordinates of type Gauss-Krueger or
UTM to global conformal coordinates of type Gauss-Krueger or UTM. We therefore summarize
the results as follows.
Box 21.25 (Polynomial representation of global conformal coordinates {X,Y } in terms of
local conformal coordinates {x, y} due to a curvilinear datum transformation, Gauss-Krueger
conformal mapping or UTM, polynomial degree three, Easting X,x , Northing Y,y ).
X ( x, y, ρ, t x ,t y ,t z ,α,β,γ,s,δE 2 )=
= ρ x 00 + x 10 x
ρ + x 01 y
ρ − y 00 + x 20 x
2
y
ρ − y 00
+ x 11 x
ρ
ρ
+ x 02 y
y 00 2
ρ
+
y 00 3
+ x 30 x
ρ
3
+ x 21 x
ρ
2 y
ρ
y 00 + x 12 x
ρ
y
ρ
y 00 2
+ x 03 y
ρ
+O(4) ,
(21.82)
Y ( x, y, ρ, t x ,t y ,t z ,α,β,γ,s,δE 2 )=
= ρ y 00 + y 10 x
ρ + y 01 y
y 00 + y 20 x
ρ
2
y
ρ
y 00
+ y 11 x
ρ
ρ
+ y 02 y
y 00 2
ρ
+
 
Search WWH ::




Custom Search