Geography Reference
In-Depth Information
21-41 Direct Transformation of Local Conformal into Global
Conformal Coordinates
The problem of generating Gauss-Krueger or UTM conformal coordinates
{
X,Y
}
of a global
2
A 1 ,A 2
reference ellipsoid-of-revolution
E
in terms of Gauss-Krueger or UTM conformal coordinates
2
a 1 ,a 2
{
under a
curvilinear datum transformation is solved here by a three-step-procedure according to the com-
mutative diagram of Fig. 21.5 . The first step is a representation of global conformal coordinates
of type Gauss-Krueger or UTM in terms of conformal bivariate polynomials X ( L
x, y
}
of a local (regional, National, European) reference ellipsoid-of-revolution
E
B 0 )
and Y ( L − L 0 ,B− B 0 ) with respect to surface normal ellipsoidal longitude/ellipsoidal latitude
increments {L − L 0 ,B− B 0 } . The second step is divided into two sub-steps. First we trans-
form the global ellipsoidal longitude/ellipsoidal latitude increments into local ellipsoidal longi-
tude/ellipsoidal latitude increments {l−l 0 ,b−b 0 } by means of a curvilinear datum transformation
(i.e. a linear function of the three parameters of translation, three parameters of rotation, and one
scale parameter). Second, we implement the transformation
L 0 ,B
{
L
L 0 ,B
B 0 } →{
l
l 0 ,b
b 0 }
into the representation
, in particular, including the curvi-
linear datum transformation for polynomial coecients, too. Finally, the third step is split into
two sub-steps. First, we repeat the representation of local conformal coordinates of type Gauss-
Krueger or UTM in terms of conformal bivariate polynomials
{
X ( l
l 0 ,b
b 0 ) ,Y ( l
l 0 ,b
b 0 )
}
{
x ( l
l 0 ,b
b 0 ) ,y ( l
l 0 ,b
b 0 )
}
with respect to surface normal ellipsoidal longitude/ellipsoidal latitude increments
{
l
l 0 ,b
b 0 }
,
namely in order to construct the inverse polynomials
{
l
l 0 ( x, y ) ,b
b 0 ( x, y )
}
by bivariate series
inversion. Second, we transfer the bivariate polynomial representation
{
l
l 0 ( x, y ) ,b
b 0 ( x, y )
}
to
the power series
{
X ( l
l 0 ) ,Y ( b
b 0 )
}
in order to achieve the final bivariate general polynomials
{
X ( x, y ) ,Y ( x, y )
}
.
21-411 The First Step: Conformal Coordinates in a Global Datum
A 1 ,A 2
Conformal coordinates of an ellipsoid-of-revolution
in a global frame of reference (semi-
major axis A 1 , semi-minor axis A 2 , relative eccentricity squared E 2 := ( A 1
E
A 2 ) /A 1 )oftype
Gauss-Krueger or UTM are generated by a polynomial representation in terms of surface normal
ellipsoidal longitude L and ellipsoidal latitude B with respect to an evaluation point {L 0 ,B 0 } :
see Box 21.11 in connection with Boxes 15.4 and 15.5 .
L 0 is also called the ellipsoidal longitude of the meridian of reference. While the coecient
Y 00 represents the arc length of the meridian L 0 of reference, the coecients are generated by
solving the vector-valued boundary value problem of the Korn-Lichtenstein equations of conformal
mapping subject to the integrability conditions, the vector-valued Laplace-Beltrami equations.
The constraint of the vector-valued boundary value problem is the equidistant mapping of the
meridian L 0 of reference and outlined by Grafarend ( 1995 )and Grafarend and Ardalan ( 1997 )
(Figs. 21.6 and 21.7 ).
Box 21.11 (Polynomial representation of conformal coordinates of type Gauss-Krueger or
UTM, ellipsoid-of-revolution
(Easting X , Northing Y ), surface normal ellipsoidal lon-
gitude L and ellipsoidal latitude B , evaluation point
E
A 1 ,A 2
{
L 0 ,B 0 }
, optimal factor of conformality
3 . 5 , +3 . 5 ]
[80 S , 84 N]; coe-
ρ =0 . 999578 (UTM) for a strip [
l E , + l E ]
×
[ B S ,B N ]=[
×
cients are given in Boxes 15.4 and 15.5 ).
 
Search WWH ::




Custom Search