Geography Reference
In-Depth Information
21-3 Error Propagation in Analysis and Synthesis of a Datum
Problem
Nonlinear error propagation. Dispersion, dispersion transformation, dispersion matrix,
variance-covariance matrix. Stochastic pseudo-observations.
pseudo-observations
by means of a best approximation ( 21.46 ) subject to ( 21.47 ), via nonlinear error propagation .we
have to consider the variance-covariance matrix/dispersion matrix of the datum parameters x =
[ t x ,t y ,t z ,α,β,γ,s ] functionally related to the variance-covariance matrix/dispersion matrix of the
pseudo-observations {l,b} and {L, B, H} . The stochastic pseudo-observations {l,b} and {L, B, H}
enter via the relative data vector ( 21.48 ) and via the analysis matrix ( 21.49 ). Accordingly, we
expand x ( l,b,L,B,H ) into the dispersion ( 21.50 ) as outlined in Box 21.9 .Ifa prior dispersion
matrix of the form parameters
First, in the analysis of the datum parameters from given
{
l,b
}
and
{
L, B, H
}
A 1 ,E 2 ,a 1 ,e 2
is available, it could also be implemented.
Second, the synthesis of global ellipsoidal coordinates
{
}
{
L, B
}
from given local ellipsoidal coor-
t x ,t y ,t z ,α,β,γ,s,δa,δe 2
dinates
{
l,b
}
and datum parameters/ellipsoidal form parameters
{
}
,we
t x , ..., δe 2
again experience the impact of the dispersion matrix of
{
l,b
}
as well as of
{
}
via nonlinear error propagation. The random character of the pseudo-observations
enters
firstly linearly and secondly nonlinearly via B 0 ( l,b ), while the stochastic a posteriori parameters
{
{
l,b
}
enter linearly. Box 21.10 reviews the expansion [ L, B ]( l,b, t x ,...,δe 2 )towardsthe
dispersion ( 21.51 ).
t x ,...,δe 2
}
x =(A T PA) 1 A T P y := L y,
(21.46)
L=(A T PA) 1 A T P ,
(21.47)
B ] T ,
y := [ l
L, b
(21.48)
A=A( L, B, H ) ,
(21.49)
D( x )=M k D kl ( l,b,L,B,H )M l ,
(21.50)
D( L, B )=K μ D μν ( l,b, t x ,...,δe 2 )K ν .
(21.51)
Box 21.9 (Error propagation with respect to analysis x ( l,b,L,B,H )).
d x =dL y +Ld y.
(21.52)
dL =
(A T A)dA T A(A T A) 1 A T +(A T A) 1 dA T
(A T A) 1 A T dA(A T A) 1 A T =
=
(21.53)
NdA T AL
LdAL + N 1 dA T
subject to
N:=A T A , P=I .
=
(21.54)
NdA T A x
LdA x +N 1 dA T y +Ld y ,
d x =
(A x ) T
N] vec dA T
[( x ) T
L] vec dA + [( y ) T
N 1 ]
vec d x =[
 
Search WWH ::




Custom Search