Geography Reference
In-Depth Information
P := sin B 0 cos 2 B 0
9
[1 + 2 E 2 (1 2cos 2 B 0 )] + O( E 4 ) ,
Q :=
sin B 0
36
[1 + 2 E 2 (1
5cos 2 B 0 )] + O( E 4 ) ,
A
I AR = A 1 (1 E 2 )
S E 2 A 1 A 2
5 l F ( b N − b S )+ B
9 l E ( b N − b S )+
(20.174)
b S )+O(8) ,
+ C
b S )+ D
b S )+ P
b S )+ Q
5 l E ( b N
10 l E ( b N
12 l E ( b N
6 l E ( b N
1
S E 2 A 1 ,A 2
=
2 E 2 sin 2 B 0 ++sin B 0 (1
2 E 2 sin 2 B 0
= 1
4 E 2 cos 2 B 0 )( b N + b S ) / 2cos B 0 +O( b 2 )
,
2 A 1 (1
E 2 )cos B 0 l E ( b N
b S )
(20.175)
A
b N
b S
b N
b S
1
2cos B 0
5 l E + B
b S l E + C
I AR =
b S +
9
b N
5
b N
12 P b N
b S
b N
b S
+ D
10 ( b N + b S ) l E + P
b S l E + Q
×
(20.176)
b N
6
b N
b S
2 E 2 sin 2 B 0 +sin B 0 (1
2 E 2 sin 2 B 0
1
4 E 2 cos 2 B 0 )( b N + b S )
×
+O R (6) ,
2cos B 0
b S )= cos 4 B 0
360
(1 + 2 E 2 cos 2 B 0 +O( E 4 )) l E +
I AR ( b N =
+ cos 2 B 0
324
(1 + O( E 4 )) b N l E + (1 2 E 2 cos 2 B 0 +O( E 4 ))
b N +O R (6) .
(20.177)
360
End of Proof.
As an example, we compare in Table 20.5 the total deformation energy for conformal Gauss-
Krueger coordinates, parallel Soldner coordinates, and normal Riemann coordinates. Obviously,
in the range of application, normal Riemann coordinates generate the smallest global distortion ,
followed by parallel Soldner coordinates (factor half compared to conformal Gauss-Krueger coor-
dinates), and conformal Gauss-Krueger coordinates.
Here, we take reference to G. B. Airy's definition of “balance of erros”. Conformal geodesics were
treated by Beltrami ( 1869 ), Fialkow ( 1939 ), Legendre ( 1806 ), Schouten ( 1954 ), Vogel ( 1970 , 1973 ),
Weingarten ( 1861 ), and Yano ( 1970 , 1940a , b ). Boltz ( 1943 ) presented formulae and tables for the
normal computation of Gauss-Krueger coordinates which we use here. For the optimal Universal
 
Search WWH ::




Custom Search