Geography Reference
In-Depth Information
= (10) + (11) b + (12) b 2 + 3(30) l 2 +O 3 x
.
(11) l + 2(12) lb +O 3 x
(20.135)
(01) + 2(02) b 1 + 3(03) b 2 +O 3 y
2(20) l +O 3 y
The matrix [ c KL ] is given in Box 20.9 . Let us canonically compare the two positive-definite,
symmetric matrices left metric matrix G l =
{
G KL }
and left Cauchy-Green matrix C l =
{
c KL }
,
namely by the simultaneous diagonalization ( 20.136 ).
F l C l F l =diag( Λ 1 1 ) susF l G l F l =I 2 .
(20.136)
By means of the left Frobenius matrix F l , the left Cauchy-Green matrix C l is transformed into
a diagonal matrix (( Λ 1 2 ) are the eigenvalues). In contrast, the left metric matrix G l is trans-
formed into a unit matrix I 2 . The problem to simultaneously diagonalize the two symmetric
matrices
,whereG l is positive-definite, is equivalent to the general eigenvalue-eigenvector
problem . Here, we are left with eigenvalues
{
C l , G l }
(typical for (Riemann) polar/normal
coordinates), which are given by Box 20.10 . Finally, we compute the maximum angular distor-
tion ( 20.137 )inBox 20.11 .
{
Λ 1 2 =1
}
ω := 2 arcsin Λ 1
Λ 2
Λ 1 + Λ 2 .
(20.137)
Box 20.9 (Left Cauchy-Green deformation tensor, Riemann coordinates).
c 11 =
V 0 b + 3 t 0
2 η 0
9 η 0 t 0
cos 2 B 0 t 0
3
2 t 0
2
b 2
bl 2
=1
3 V 0
η 0 (5 + 12 t 0 )
η 0 (7 + 12 t 0 ))
+ t 0 (2
b 3 +
3 V 0
+ V 0 t 0 cos 4 B 0
12
(14 60 t 0 + η 0 (28 63 t 0 )+ η 0 (14 3 t 0 )) cos 2 B 0
90 V 0
l 4
b 2 l 2 +
b 4
60 V 0 [4
η 0 (24
292 t 0 +60 t 0 )
η 0 (60
369 t 0
240 t 0 )
+
−η 0 (32 77 t 0 1140 t 0 )] ×
×
N 0 cos 2 B 0 ,
c 12 = c 21 =
3 V 0 bl + t (2
1
3 η 0
5 η 0 )
b 2 l + cos 2 B 0 t 0
6
l 3 +
=
6 V 0
2 η 0 (17
81 t 0 )
η 0 (80
39 t 0 )
η 0 (42 + 123 t 0 )
+ 4
b 3 l +
(20.138)
90 V 0
bl 3
10 t 0 + η 0 (8 + 17 t 0 )+ η 0 (4 + 27 t 0 )) cos 2 B 0
90 V 0
+ (4
×
N 0 cos 2 B 0 ,
c 22 =
×
V 0 + 6 η 0 t 0
t 0 + η 0 +7 η 0 t 0 )
V 0
b 2 + cos 2 B 0
3 V 0
1
b + 3(1
l 2
=
V 0
 
Search WWH ::




Custom Search