Geography Reference
In-Depth Information
Table 20.4 Fermi coordinates: input
{
L 0 ,B 0 ,x,y
}
versus output
{
L,B
}
.Parttwo
Ellipsoidal coordinates, footpoint P F :
B F =49 36 49”.565 8, L F =11 2 50”.4690.
Azimuth α F0 :
α F0 =49 15 46”.4706.
Azimuth α FP :
α FP = 319 15 46”.4706.
Azimuth α PF :
α PF = 318 44 47”.4562.
Ellipsoidal coordinates, point P :
B = B P =49 13 41”.779 7, L = L P =11 43 38”.092 5.
Length of the geodesic s = P 0
P as a result from the corresponding
boundary value problem:
s = 243 070 . 157 m.
Azimuth of s in P 0 :
α 0 P =35 12 9”.629 4.
Azimuth of s in P :
αP 0 =33 9 22”.334 2.
20-5 Deformation Analysis: Riemann, Soldner, Gauss-Krueger
Coordinates
Riemann coordinates, Soldner coordinates, and Gauss-Krueger coordinates. Deformation
analysis: Cauchy-Green matrix, Jacoby matrix, principal distortions.
In the following, the metric d S 2 of
2
A 1 ,A 2
is to be compared with the metric d s 2 of the chart
E
established by Riemann normal coordinates
{
x, y
}
,namely
d S 2 = G KL ( U M )d U K d U L
versus d s 2 = g kl ( u m )d u k d u l ,
(20.132)
d S 2 = N 2 ( B )cos 2 B d L 2 + M 2 ( B )d B 2
versus d s 2 =d x 2 +d y 2 = r 2 d α 2 +d r 2 ,
(20.133)
subject to the mapping equations x ( l, b )(
( 20.82 )). By pullback ,we
derive the left Cauchy-Green tensor C l with the right metric matrix G r =I 2 and the left Jacobian
matrix J l ,namely
( 20.81 )) and y( l, b )(
∂x i
∂U K δ ij
∂x j
∂U L ,
C l =J l G r J l or c KL =
(20.134)
J l = ∂x
=
∂x
∂B
∂L
∂y
∂L
∂y
∂B
Search WWH ::




Custom Search