Geography Reference
In-Depth Information
0 ([01]
0 + [ μν ]
∂B
0 y 2 + [03]
0 y 3 + [04]
0 y 4 +
[ μν ]
|
F =[ μν ]
|
|
0 y + [02]
|
|
|
···
)+
∂B 2 0
2 [ μν ]
+ 1
2!
| 0 y 2 + [03]
| 0 y 3 + [04]
| 0 y 4 +
) 2
([01]
| 0 y + [02]
···
+
···
+
(20.120)
∂B n 0
n [ μν ]
1
n !
| 0 y 2 + [03]
| 0 y 3 + [04]
| 0 y 4 + ... ) n ,
+
([01]
| 0 y + [02]
0
[ μν ] α | F =[ μν ] α | 0 + [ μν ] α
([01] α | 0 y + [02] α | 0 y 2 + [03] α | 0 y 3
∂B
+[04] α | 0 y 4 +
···
)+
0 ([01] α
2 [ μν ] α
∂B 2
+ 1
2!
0 y 2 + [03] α
0 y 3
|
0 y + [02] α
|
|
+[04] α | 0 y 4 + ··· ) 2
+ ··· +
(20.121)
0 ([01] α
n [ μν ] α
∂B n
+ 1
n !
0 y 2 + [03] α
0 y 3
|
0 y + [02] α
|
|
0 y 4 +
) n .
+[04] α
|
···
The final step consists of substituting ( 20.120 )and( 20.121 )into( 20.115 ), and summing
up ( 20.115 )and( 20.114 ). The finally resulting representation for the ellipsoidal coordinates
{L, B} of point P , given the Soldner coordinates {x, y} with respect to the point P 0 ( L 0 ,B 0 ),
is of the form ( 20.73 )-( 20.75 ) with Soldner coecients [ μν ] L and [ μν ] B :
L = L P = L 0 +
[ μν ] L x μ y ν ,
μ =0
ν =0
B = B P = B 0 +
[ μν ] B x μ y ν ,
(20.122)
μ =0
ν =0
[ μν ] α x μ y ν .
γ = α PF =
μ =0
ν =0
As an alternative, the numerical computation of
is done using the two-step-method
combined with a numerical integration of ( 20.69 )and( 20.71 ), for example, by classical Runge-
Kutta techniques. First integrate ( 20.69 )and( 20.71 ) numerically with initial values ( 20.123 )
in order to obtain ( 20.124 ), then integrate ( 20.69 )and( 20.71 ) a second time with initial values
( 20.125 ) with the result for ( 20.126 ):
{
L, B, γ
}
 
Search WWH ::




Custom Search