Geography Reference
In-Depth Information
appear when we have a computer at hand. For a large number of map projections, there is no
problem to analytically compute the eigenspace. Such an example is considered after the boxes.
Box 1.9 (Eckert II, the first problem).
x = c 1 Λ 4
2 R
6 π ,
3sin
|
Φ
|
, 1 :=
sign φ, c 2 := R 2 π
3
y = c 2 2 4 3sin |Φ|
= πc 1 .
(1.74)
Meridians :
4
x
c 1 Λ
c 2
c 1
x
Λ =2 c 2
π x
3sin
|
Φ
|
=
y =2 c 2
Λ ,
Λ = constant ⇒ y =2 c 2 − c 3 x, c 3 := π
Λ , L 1 ( Λ = constant)
2
:= {x ∈ R
|y =2 c 2 − c 3 x} .
(1.75)
Parallel circles:
Φ = constant ⇒ x = c 4 Λ, c 4 := c 1 4 3sin |Φ| ,y = c 5 ,
c 5 := 2 c 2 − c 2 4 3sin |Φ| ,
(1.76)
L 1 ( Φ = constant) :=
2
{
x
R
|
x = c 4 Λ, y = c 5
}
.
“Half”:
(i) length of the circular equator:
x ( Λ =+ π,Φ =0)
π,Φ =0)=8 Rπ/ 6 π,
(ii) length of the central meridian:
x ( Λ =0 = π/ 2)
x ( Λ =
π/ 2) = 4 Rπ/ 6 π,
x ( Λ =0 =
(1.77)
(iii) length of the pole:
= π/ 2) = 4 Rπ/ 6 π.
x ( Λ =+ π,
|
Φ
|
= π/ 2)
x ( Λ =
π,
|
Φ
|
Box 1.10 (Eckert II, the second problem).
x = c 1 Λ 4
2 R
6 π ,
3sin
|
Φ
|
,c 1 :=
sign φ, c 2 := R 2 π
3
y = c 2 2
4
3sin
|
Φ
|
= πc 1 .
(1.78)
Left Jacobi matrix:
D Λ x = c 1 4
J l := D Λ xD Φ x
,
c 2 Λ 3cos Φ sign Φ
4 3sin |Φ|
3sin
|
Φ
|
, D Φ x =
,
(1.79)
D Λ y =0 ,D Φ y = 3 c 2
4 3sin |Φ|
cos Φ
D Λ yD Φ y
.
Left Cauchy-Green matrix:
 
Search WWH ::




Custom Search