Geography Reference
In-Depth Information
d U K
d S
= G KL P L = ∂H 2
∂P K ,
(20.63)
∂G AB
∂U K P A P B =
∂H 2
∂U K ,
d P K
d S
1
2
=
H 2 := P K d U K
2 = 1
2 G KL P K P L .
d S −L
(20.64)
2
A 1 ,A 2
First, let us assume that the differentiable manifold
E
is partially covered by a set of orthog-
onal coordinates
, especially in the sense of G 12 = 0: the Hamilton equations are firstly
specified towards ( 20.65 ), ( 20.66 ), and ( 20.67 ).
L = G 11 P 1 =cos α/ G 11 ,
{
L, B
}
(20.65)
B = G 22 P 2 =sin α/ G 22 ,
1
1
P 1 = P L =
2 ( G 11
,L P 1 + G 22
,L P 2 )=
2 (cos 2 αG 11 G 11
,L +sin 2 αG 22 G 22
,L ) ,
(20.66)
1
1
P 2 = P B =
2 ( G 11
,B P 1 + G 22
,B P 2 )=
2 (cos 2 αG 11 G 11
,B +sin 2 αG 22 G 22
,B ) .
(20.67)
If we compare ( 20.67 )and( 20.62 ), differentiated by ( G 22 sin α ) ,G 11
,B = G 1
11 ,B = −G 2
11 G 11 ,B ,
,B = G 1
22 ,B = −G 2
and G 22
22 G 22 ,B ,weareledto( 20.68 ). Of course, the sam e re sult would have been
achieved by the comparison of ( 20.66 )and( 20.62 ), differentiated by ( G 11 cos α ) .
G 22
∂L
sin α + G 11
∂B
cos α .
1
α =
G 11 G 22
(20.68)
Second, we specify the metric tensor G KL by Box 20.1 , 1st chart, in terms of orthogonal coordi-
nates
. Obviously, P L = 0 (which holds for arbitrary surfaces-of-
revolution) generates the conservation of angular momentum P 1 = N ( B )cos B cos α = A ,where
the constant A is the A. C. Clairaut constant.
2
A 1 ,A 2
{
L, B
}
covering partially
E
cos α
sin α
M ( B ) ,
L =
N ( B )cos B , B =
(20.69)
P 1 = P L =[ N ( B )cos B cos α ] =0 ,
cos 2 α d
d B ln( M 2 ( B ) ,
P 2 = P B = 1
d B ln( N 2 ( B )cos 2 B )+sin 2 α d
(20.70)
2
tan B
N ( B ) cos α.
α =
(20.71)
The ellipsoid-of-revolution
E
A 1 ,A 2
is an analytic manifold . Thus, there exists the Taylor expansion
in phase space
{
L, B, P L ,P B }
or
{
L, B, α
}
, respectively, namely
 
Search WWH ::




Custom Search