Geography Reference
In-Depth Information
Corollary 20.1 ( κ g n g ).
U M 1 + U K 1 U L 1 M 1
U M 2 + U K 2 U L 2 M 2
,
κ g = G M 1 M 2
(20.28)
K 1 L 1
K 2 L 2
κ n = H KL U K U L ,
(20.29)
τ g = H KL U K U L + N
H NM U K U L U M
×
KL
G M 1 M 2
U M 1 + U K 1 U L 1 M 1
U M 2 + U K 2 U L 2 M 2
1 / 2
×
.
(20.30)
K 1 L 1
K 2 L 2
End of Corollary.
The curve C is called geodesic if κ g =0andthecurve C is called a geodesic circle if κ g =
const., κ n = const., and τ g = 0. Compare with Examples 20.1 and 20.2 .
Example 20.1 (Geodesic as a submanifold in { E
A 1 ,A 2 ,G KL },L = c = const: “meridian”).
A 1 cos T cos c
A 1 cos T sin c
+ E 3 A 1 (1 E 2 )sin T
X =+ E 1
1
+ E 2
1
1
,
(20.31)
E 2 sin 2 T
E 2 sin 2 T
E 2 sin 2 T
X /
X
D 1 =
E 1 sin T cos c
E 2 sin T sin c + E 3 cos T =:
,
D 2 = E 1 sin c
E 2 cos c,
(20.32)
D 3 = E 1 cos T cos c + E 2 cos T sin c + E 3 sin T,
sin T cos c − sin T sin c cos T
sin c − cos c 0
cos T cos c cos T sin c sin T
E ,
D =
(20.33)
D =R E , D =R E =R R T D D R SO(3) ,
(20.34)
T cos T cos c
T cos T sin c
T sin T
T
000
+ T 00
00
, Ω:=R R T =
,
R =
0
0
0
(20.35)
T sin T cos c
T sin T sin c + T cos T
κ g =0 n = −T g =0 ,
E 2 )
E 2 sin 2 T ) 3 / 2
A 1 (1
= dS
(1 − E 2 sin 2 T ) 3 / 2 , T := d T
A 1 (1
d S = (1
X
dT =
,
(20.36)
E 2 )
E 2 sin 2 T ) 3 / 2
A 1 (1
(1
κ g =0 , n =
g =0 .
(20.37)
E 2 )
End of Example.
Obviously, the meridian L =const.isa geodesic .
 
Search WWH ::




Custom Search