Geography Reference
In-Depth Information
3 IJ } is represented either in the orthonormal triad
{ E 1 , E 2 , E 3 } , which is oriented along the ordered principal axes of the ellipsoid-of-revolution,
or is represented in the transverse orthonormal triad { E 1 , E 2 , E 3 } = {− E 1 , E 3 , E 2 }. X I
X I X II X II constitute the minimal atlas of E
The placement vector X ∈{ R
A 1 ,A 2 . Inverse formulae {L, B} ( X, Y, Z )and
{
( X, Y, Z )aregivenby Grafarend and Lohse ( 1991 ). Note that in both charts (local
coordinates
U, V
}
, respectively) the surface normal vector G 3 is represented by
( 20.4 ), motivating why the local coordinates
{
L, B
}
and
{
U, V
}
{
L, B
}
and
{
U, V
}
, respectively, are called surface
normal coordinates .
G 3 =+ E 1 cos B cos L + E 2 cos B sin L + E 3 sin B
versus
(20.4)
G 3 =+ E 1 cos V cos U + E 2 cos V sin U + E 3 sin V.
2
3 IJ
The embedding
E
A 1 ,A 2 ⊂{ R
}
is characterized by the mapping equations
tan L = Y
X
Z
versus tan U =
E 2 ) X ,
(20.5)
(1
Z
(1
E 2 ) Y
tan B =
E 2 ) X 2 + Y 2
versus tan V =
(1
E 2 ) X 2 + Z 2 .
(20.6)
(1
E 2 A 1 ,A 2 . First chart: “surface normal” ellipsoidal longitude, ellipsoidal latitude
Fig. 20.2. The minimal atlas of
{
0 <L< 2 π,
π/ 2 <B< + π/ 2
}
. Second chart: “surface normal” meta-longitude, meta-latitude
{
0 <U<
2 π,
. Half ellipse L =0,SouthPole B = π/ 2, North Pole B =+ π/ 2 excluded in the first
chart. Half circle U = 0, meta-South Pole V =
π/ 2 <V < + π/ 2
}
π/ 2, meta-North Pole V =+ π/ 2 excluded in the second chart.
{
E 1 ,E 2 }
span the equator plane,
{
E 1 ,E 2 }
=
{−
E 1 ,E 3 }
span the meta-equator plane
 
Search WWH ::




Custom Search