Geography Reference
In-Depth Information
of symmetric matrices,
G l positive-definite, we succeed to compute and illustrate the principal distortions of the Riemann
mapping. We conclude with a global distortion analysis generated by charting the ellipsoid-of-
revolution
Solving the general eigenvalue/eigenvector problem for the pair
{
C l , G l }
2
A 1 ,A 2
by means of conformal Gauss-Krueger coordinates, parallel Soldner coordinates
and normal Riemann coordinates summarized by the Airy measure of total deformation or total
distortion for a symmetric strip [
E
. A special
highlight is Table 20.5 , comparing those three coordinate systems in favor of normal Riemann
coordinates . Assume a celestial body like the Earth can be globally modeled by an ellipsoid-
of-revolution. Then in terms of the Airy measure of total deformation on a symmetric strip
[ −l E , + l E ] × [ −b N , + b N ] given by Table 20.5 , normal coordinates produce the minimal Airy
global distortion when compared to parallel Soldner coordinates and conformal Gauss-Krueger
coordinates. Let us therefore push forward the geodetic application of normal Riemann coordi-
nates.
l E , + l E ]
×
[
b N , + b N ] relative to a point
{
L 0 ,B 0
}
20-1 Geodesic, Geodesic Circle, Darboux Frame, Riemann
Coordinates
Riemann polar/normal coordinates. Frobenius matrix, Gauss matrix, Hesse matrix, Christof-
fel symbols. Surface fundamental forms.
2
A 1 ,A 2
(biaxial ellipsoid, spheroid, with semi-major
A 1 , with semi-minor axis A 2 , and with relative eccentricity E 2 := ( A 1
Let there be given the ellipsoid-of-revolution
E
A 2 ) /A 1 ). It is embedded
3 :=
3 IJ
in
E
{ R
}
, the three-dimensional Euclidean space of canonical metric I =
{
δ IJ
}
of
Kronecker type . The Latin indices I and J are elements of
{
1 , 2 , 3
}
.
2
A 1 ,A 2
3
( X 2 + Y 2 ) /A 1 + Z 2 /A 2 =1
E
:=
{
X
R
|
}
.
(20.1)
A 1 ,A 2
The ellipsoid-of-revolution
and
{U, V } constituted by { ellipsoidal longitude, ellipsoidal latitude } and { meta-longitude, meta-
latitude } , in particular ( 20.2 ), for open sets ( 20.3 ) illustrated in Fig. 20.2 .
E
is globally covered by the union of the two charts
{
L, B
}
A 1 cos V cos U
X I =+ E 1 A 1 cos B cos L
1 −E 2 sin 2 B
1
X II =+ E 1
E 2 sin 2 U cos 2 V
E 2 )cos V sin U
A 1 (1
1 −E 2 sin 2 B
+ E 2 A 1 cos B cos L
1
versus
+ E 2
+
(20.2)
E 2 sin 2 U cos 2 V
A 1 sin V
+ E 3 A 1 (1 E 2 )sin B
1 −E 2 sin 2 B
+ E 3
1
,
E 2 sin 2 U cos 2 V
π
2 <B< + π
0 <L< 2 π,
2 ,
π
2 <V < + π
0 <U< 2 π,
2 .
(20.3)
 
Search WWH ::




Custom Search