Geography Reference
In-Depth Information
(19.10)
d f
f
= n
(1 − E 2 cos 2 Δ )sin Δ ln f = n (1 − E 2 )
(1 − E 2 )d Δ
d Δ
(1 − E 2 cos 2 Δ )sin Δ .
Here, let us substitute u := E cos Δ :
E 2 ) E
sin 2 Δ = E 2
u 2
d u
d Δ = E (
d u
,
sin Δ ) , ln f =
n (1
u 2 ) . (19.11)
E 2
(1
u 2 )( E 2
By integration-by-parts, we find in detail:
u 2 ) = A d u
u 2 + B d u
d u
u 2 ,
(19.12)
(1
u 2 )( E 2
1
E 2
A ( E 2
u 2 )+ B (1
u 2 )=1 , AE 2 + B
u 2 ( A + B )=1 ,
AE 2 + B =1 , A + B =0
1
1
A =
E 2 , B =
1
1
E 2
(19.13)
1 − E 2
− u 2 =
d u
(1 − u 2 )( E 2
1
d u
1 − u 2
d u
− u 2 ) =
E 2
E 2 1
=
1
2 ln 1+ u
2 E ln E + u
1
=
u
1
1
E
u
ln 1+ E cos Δ
1
.
E ln 1 cos Δ
1
E cos Δ + 1
=
2(1
E 2 )
1+cos Δ
We take advantage of the addition theorem:
ln 1+ E cos Δ
+ln c
d Δ
(1 − E 2 cos 2 Δ )sin Δ =
1
2(1 − E 2 )
1 − E cos Δ + 1
E lntan 2 Δ
2
(19.14)
+ln c =ln 1+ E cos Δ
1
2 c
ln 1+ E cos Δ
1
En/ 2
ln f = nE
2
E cos Δ tan 2 /E Δ
tan n Δ
2
E cos Δ
f ( Δ ):= c 1+ E cos Δ
1 − E cos Δ
n
E/ 2
tan Δ
2
.
(19.15)
Let us here also summarize the general form of the conformal mapping equations as well as the
principal stretches.
Search WWH ::




Custom Search