Geography Reference
In-Depth Information
n
2 R n sin Φ 1 + c
R cos Φ 1
Λ 1
|
Φ = Φ 1 =
=1 .
(17.54)
We solve this equation in order to determine the integration constant c and obtain ( 17.55 ). Since
c can also be computed from Λ 1 | Φ = Φ 2 := 1, we obtain ( 17.56 )and( 17.57 ). Resubstituting this
result into ( 17.56 ) gives the final form of c ,namely( 17.58 ).
c = R 2 cos 2 Φ 1 +2 n sin Φ 1
n 2
,
(17.55)
R 2 cos 2 Φ 1 +2 n sin Φ 1
n 2
= R 2 cos 2 Φ 2 +2 n sin Φ 2
n 2
(17.56)
cos 2 Φ 1 +2 n sin Φ 1 =cos 2 Φ 2 +2 n sin Φ 2 ,
n = cos 2 Φ 1
cos 2 Φ 2
sin 2 Φ 1
1+sin 2 Φ 2
sin 2 Φ 2
sin 2 Φ 1
sin Φ 1 ) = 1
=
sin Φ 1 ) =
2(sin Φ 2
2(sin Φ 2
sin Φ 1 )
2(sin Φ 2
= (sin Φ 2
sin Φ 1 )(sin Φ 2 +sin Φ 1 )
2(sin Φ 2 sin Φ 1 )
=
(17.57)
= 1
2 (sin Φ 1 +sin Φ 2 ) ,
c =4 R 2 1+sin Φ 1 sin Φ 2
(sin Φ 1 +sin Φ 2 ) 2 .
(17.58)
As a matter of course, the cone constant and the integration constant are symmetric in Φ 1 and Φ 2 .
The final mapping equations are given by ( 17.59 )or( 17.60 ), and the final left principal stretches
are provided by ( 17.61 ). Indeed, the requirements Λ 1 | Φ = Φ 1 = Λ 2 | Φ = Φ 1 = Λ 1 | Φ = Φ 2 = Λ 2 | Φ = Φ 2 =1
are met and the inverse mapping equations are defined through ( 17.62 ).
α
r
=
=
,
n cos 2 Φ 1 +2 n sin Φ 1
(17.59)
R
2 n sin Φ
x
y
=
2 n sin Φ cos( )
,
n cos 2 Φ 1 +2 n sin Φ 1
= R
(17.60)
sin( )
= 1+sin Φ 1 sin Φ 2
Λ 1 = cos 2 Φ 1 +2 n sin Φ 1
2 n sin Φ
(sin Φ 1 +sin Φ 2 )sin Φ
cos Φ
,
(17.61)
cos Φ
Λ 2 = Λ 1 .
cos 2 Φ 1 +2 n sin Φ 1
R 2 .
nr
Λ = α
n , Φ =arcsin 1
(17.62)
2 n
 
Search WWH ::




Custom Search