Geography Reference
In-Depth Information
(16.42)
A 2 sin i
(1
sin α
A 1 cos 2 α + A 2 cos 2 i sin 2 α
tan B =
.
E 2 )
End of Proof.
Proof.
x 3 = z =0
tan α = y
x
A 1
A 2 =
= y
x
1
1 − E 2 =
= 1 E 2 cos 2 i
x 1 sin Ω cos i + x 2 cos Ω cos i + x 3 sin i
x 1 cos Ω + x 2 sin Ω
=
1
(16.43)
E 2
= 1
cos B sin( L
E 2 )sin B sin i
E 2 cos 2 i
Ω )cos i +(1
1
cos B cos( L
Ω )
E 2
tan α = 1
E 2 cos 2 i
1
cos( L
1 − E 2
E 2 )sin i tan B +cos i sin( L
Ω ) [(1
Ω )] .
End of Proof.
16-3 The Equations of the Oblique Mercator Projection
Universal oblique Mercator projection. D'Alembert-Euler equations (Cauchy-Riemann equa-
tions), oblique elliptic meta-equator.
The fundamental solution ( 16.16 ) of the d'Alembert-Euler equations (Cauchy-Riemann equa-
tions) here are specified by
} UMP of type ( 16.10 ) and by the boundary condition of an
equidistant mapping of the oblique elliptic meta-equator illustrated by Figs. 16.3 and 16.4 .In
particular, we depart from ( 16.16 )and( 16.10 ), conventionally written as ( 16.44 ), here only given
up to degree three.
{
p, q
Δx := x
α 0 =
= α 1 Δq + β 1 Δl + α 2 ( Δq 2
Δl 2 )+ β 2 2 ΔqΔl +O x 3 ,
(16.44)
Δy := y
β 0 =
Search WWH ::




Custom Search