Geography Reference
In-Depth Information
of two positive-definite symmetric matrices
{
C l , G l }
or
{
C r , G r }
, respectively. Compare with
Lemma 1.5 .
Lemma 1.5 (Left and right general eigenvalue problem of the Cauchy-Green deformation tensor).
For the pair of positive-definite symmetric matrices
{
C l , G l
}
or
{
C r , G r
}
, respectively, a simulta-
neous diagonalization defined by
left diagonalization:
right diagonalization:
F l C l F l =diag( Λ 1 2 ):=D l ,
F r C r F r =diag( λ 1 2 ):=D r ,
(1.56)
versus
F l G l F l =I 2
F r G I F r =I 2
is readily obtained from the following general eigenvalue-eigenvector problem of type left eigen-
values and left principal stretches :
C l F l
G l F l D l =0
⇐⇒
Λ i G l ) f li =0
⇐⇒
(C l
(1.57)
Λ 2 G l |
|
C l
=0 ,
tr[C l G l ]
4det[C l G l ] ,
(tr[C l G l ]) 2
= 1
2
Λ 1 , 2 = Λ 2
±
±
subject to F l G l F l =I 2 , and
C r F r G r F r D r =0
⇐⇒
λ i G r ) f r i =0
⇐⇒
(C r
(1.58)
λ 2 G r
|
C r
|
=0 ,
tr[C r G r ]
4det[C r G r ] ,
(tr[C r G r ]) 2
= 1
2
λ 1 , 2 = λ 2
±
±
subject to F r G r F r =I 2 , and
Λ 1 , 2 =1 1 , 2 ⇐⇒
1 1 , 2 = λ 1 , 2 .
(1.59)
End of Lemma.
In order to visualize the eigenspace of the left and right Cauchy-Green deformation tensors
C l and C r relative to the left and right metric tensors G i and G r , we are forced to compute in
addition the eigenvectors , in particular, the eigencolumns (also called eigendirections ) of the pairs
{
C l , G l
}
and
{
C r , G r
}
, respectively. Compare with Lemma 1.6 .
Lemma 1.6 (Left and right general eigenvectors, left and right principal stretch directions).
For the pair of positive-definite symmetric matrices
, an explicit form of the
left eigencolumns (also called left principal stretch directions ) and of the right eigencolumns (also
called right principal stretch directions )is
{
C l , G l
}
and
{
C r , G r
}
 
Search WWH ::




Custom Search