Geography Reference
In-Depth Information
{
L, B
}→{
x 1 ,y 1
}
:
L 01 =9 ,
dilatation factor ρ =1 ,
B 0 =48 ,
x 1 = 126 , 967 . 2483 m , 1 =5 , 105 . 56924 m ,
y 0 ( B 0 =48 ) = 531 , 785 . 23232 m .
Conventional Gauss-Krueger coordinates:
Northing y GK = y 0 + y 1 =5 , 368 , 890 . 8015 m ,
False Easting x GK = L 01
10 6 m + 500 m + x 1 =3 , 626 , 967 . 2483 m .
3 ×
{L, B}→{x 2 ,y 2 } :
L 02 =12 ,
dilatation factor ρ =1 ,
B 0 =48 ,
x 2 = 94 , 942 . 37114 m , 2 =50 , 378 . 01551 m .
Conventional Gauss-Krueger coordinates:
Northing y GK =5 , 368 , 263 . 24782 m ,
False Easting x GK = L 02
10 6 m+500m+ x 2 = 405 , 057 . 62886 m .
3 ×
{x 1 ,y 1 }→{x 2 ,y 2 } :
B 0 =48 ,
x 2 =
94 , 942 . 37110 m ,y 2 =50 , 378 . 01551 m ,
End of Example.
Within the world of map projections, the Oblique Mercator projection (UOM) plays an impor-
tant role. In the next chapter, let us have a closer look at the Oblique Mercator Projection
(UOM).
Example 15.9 (WGS84 reference ellipsoid, strip transformation x 2 ( x 1 ,y 1 )and y 2 ( x 1 ,y 1 )ofcon-
formal coordinates of UTM type versus direct transformations {L, B}→{x 1 ,y 1 } with respect
to L 01 =9 and {L, B}→{x 2 ,y 2 } with respect to L 02 =15 , B =49 ,and L =12 0 36 ).
{
L, B
}→{
x 1 ,y 1 }
:
L 01 =9 ,
dilatation factor ρ =0 . 9578 ,
Search WWH ::




Custom Search