Geography Reference
In-Depth Information
E 2 A 1 ,A 2 , semi-major axis A 1 , semi-minor
axis A 2 ; meridian of reference L 01 and L 02 , respectively, reference points
Fig. 15.18. Oblique orthogonal projection of an ellipsoid-of-revolution
{
L 01 ,B 01 = B 0 }
and
{
L 02 ,B 02 = B 0 }
,
E 2 A 1 ,A 2
respectively; L 01 -strip, L 02 -strip; a point P ( L,B )on
15-611 The First Step: Polynomial Representation of Conformal Coordinates in the First Strip
and Bivariate Series Inversion
The standard polynomial representation of conformal coordinates of type Gauss-Krueger or UTM
in the L 01 -strip is given by ( 15.109 )and( 15.110 ) subject to the longitude/latitude differences
l 1 ;= L
B 01 with respect to the longitude L 01 of the reference meridian and
the latitude B 01 of the reference point
L 01 and b 1 ;= B
{
L 01 ,B 01
}
of series expansion.
Easting :
(15.109)
x 1 = ρ ( x 10 l 1 + x 11 l 1 b 1 + x 30 l 1 + x 12 l 1 b 1 +O 4 x ) .
Northing :
(15.110)
y 1 = ρ ( y 0 + y 01 b 1 + y 20 l 1 + y 02 b 1 + y 03 b 1 +O 4 y ) .
y 0 denotes the length of the meridian arc from zero ellipsoidal latitude to the ellipsoidal latitude
B 01 of the reference point
. The dilatation factor ρ amounts to one for a classical Gauss-
Krueger conformal mapping. Optimal alternative values for the dilatation factor depending on
the width of the strip, namely for UTM, are given in Box 15.9 . The coecients
{
L 01 ,B 01
}
of the
conformal polynomial of type ( 15.109 )and( 15.110 ) of order five are derived in Grafarend ( 1995 ,
pp. 457-459), for instance, and listed in Boxes 15.4 and 15.5 . The length y 0 of the meridian arc
from the equator to the reference point is computed from ( 15.114 )inBox 15.10 .
{
x ij ,y ij }
Search WWH ::




Custom Search