Geography Reference
In-Depth Information
[( 15.72 )] y 22 3
[( 15.72 )] x 22 =0 ,
2 r 0 x 13
1
2 r 2 x 11 ,
r 1 x 12
[( 15.72 )] x 13 = 1
s 0 (4 y 04
s 1 x 12
s 2 x 11
s 3 x 10 ) .
[( 15.72 )] y 13 =0 .
(15.83)
Theorem 15.4 (The solution of the Korn-Lichtenstein equations of conformal mapping which
generates directly Gauss-Krueger or UTM conformal coordinates).
The equidistant mapping of the meridian of reference L 0 , which is the constraint fixing the general
solution ( 15.84 ) of the Korn-Lichtenstein equations ( 15.85 ) subject to the integrability conditions,
the Laplace-Beltrami equations given by ( 15.86 ), leads us to the solution ( 15.87 ) in the function
space of bivariate polynomials (Figs. 15.3 and 15.4 ).
x ( l,b )=0 , (0 ,b )=
y 0 n b n ,
(15.84)
n =1
G 11 /G 22 y b =0 , b
G 22 /G 11 y l =0 ,
x l
(15.85)
Δ LB x ( l,b )
y ( l,b ) =0 ,
(15.86)
x ( l,b )=
= x 10 l + x 11 lb + x 30 l 3 + x 12 lb 2 + x 31 l 3 b + x 13 lb 3 + x 50 l 5 + x 32 l 3 b 2 +
+ x 14 lb 4 +O(6) ,
(15.87)
y ( l,b )=
= y 01 b + y 20 l 2 + y 02 b 2 + y 21 l 2 b + y 03 b 3 + y 40 l 4 + y 22 l 2 b 2 + y 04 b 4 + y 41 l 4 b + y 23 l 2 b 3 +
+ y 05 b 5 +O(6) .
Boxes 15.4 and 15.5 are a collection of the coecients x 10 , ..., y 05 .
End of Theorem.
Box 15.4 (A representation of the non-vanishing coecients in a polynomial setup of a
conformal mapping of type Gauss-Krueger or UTM).
x ( l,b )=
= x 10 l + x 11 lb + x 30 l 3 + x 12 lb 2 + x 31 l 3 b + x 13 lb 3 + x 50 l 5 + x 32 l 3 b 2 +
(15.88)
+ x 14 lb 4 +O(6) .
A 1 cos B 0
x 10 =
E 2 sin 2 B 0 ) 1 / 2 ,
(1
 
Search WWH ::




Custom Search