Geography Reference
In-Depth Information
conformal mapping or universal transverse Mercator projection conformal mapping. The arc
length of the coordinate line L 0 = const., namely the meridian , between latitude B 0 and B
is computed by ( 15.74 ) as soon as we set up uniformly convergent Taylor series of type ( 15.75 )
and integrate term-wise.
y (0 ,b )= B
B 0
G 22 ( B )d B = B
B 0
M ( B )d B =
y 0 n b n ,
(15.74)
n =1
G 22 ( B )= M ( B )=
A 1 (1 − E 2 )
1
n ! G ( n )
22 ( B 0 ) b n .
E 2 sin 2 B ) 3 / 2 =
(15.75)
(1
n =1
Box 15.2 , which follows subsequently, contains a list of resulting coecients y 0 n , which establish
the setup of the constraints defined in Definition 15.3 .
Definition 15.3 (Constraints to the Korn-Lichtenstein equations of conformal mapping).
Let there be given the ellipsoidal Korn-Lichtenstein equations ( 15.76 ), subject to the integrability
condition, the Laplace-Beltrami equations ( 15.77 ), which generate a conformal mapping via a
polynomial representation of type ( 15.29 )-( 15.32 ) and the coecient constraints given by ( 15.69 )-
( 15.73 ).
G 11 /G 22 x b , b = G 22 /G 11 x l ,
y l =
(15.76)
sx ll +( rx b ) b =0 , sy ll +( ry b ) b =0 .
(15.77)
The equidistant mapping of the meridian of reference L 0 establishes by means of constraints of
type ( 15.78 ) the conformal mapping of type Gauss-Krueger or UTM .
x (0 ,b )=0 , (0 ,b )=
y 0 n b n .
(15.78)
n =1
End of Definition.
Box 15.2 (The equidistant mapping of the meridian of reference L 0 ,y (0 ,b )=
n =1 y 0 n b n ,coecients y 01 ,...,y 04 ).
y 01 = G 22 B 0
A 1 (1
E 2 )
=
E 2 sin 2 B 0 ) 3 / 2 ,
(1
2 G 22 / G 22 B 0
2 [ G 22 ] = 1
y 02 = 1
= 3
2
A 1 E 2 (1 E 2 )cos B 0 sin B 0
(1
,
E 2 sin 2 B 0 ) 5 / 2
B 0
1
G 22 2 ] /G 3 / 2
24 [2 G 22 G 22
y 03 =
(15.79)
22
A 1 E 2 (1
E 2 )
= 1
2
2sin 2 B 0 +4 E 2 sin 2 B 0
3 E 2 sin 2 B 0 ) ,
E 2 sin 2 B 0 ) 7 / 2 (1
(1
B 0
1
6 G 22 G 22 G 22 +3 G 22 3 ] /G 5 / 2
192 [4 G 22 G
y 04 =
22
22
 
Search WWH ::




Custom Search