Geography Reference
In-Depth Information
1
E/ 2 tan( 4
1
1+ E sin B
1
E/ 2
B
2 )
E 2
2 A 1
E
1+ E
:=
1
=
cos B
E 2 sin 2 B
E sin B
1
E 2
E 2
1
=
E 2 sin 2 B ) f ( B ) .
cos B (1
Korn-Lichtenstein equations:
x L = G 11
G 22
G 11 y L , L =
G 11
G 22 x B , B = G 22
G 22 y B , B =
G 11 x L ,
(15.21)
G 11
G 22 =cos B 1 E 2 sin 2 B
1
E 2
E 2
1
E 2 sin 2 B ) f ( B )sin L = f ( B )sin L,
y B =
(15.22)
cos B (1
E 2 sin 2 B )
cosB (1
f ( B )cos L = f ( B )cos L.
y L =
1
E 2
End of Example.
15-2 A Fundamental Solution for the Korn-Lichtenstein Equations
A fundamental solution for the Korn-Lichtenstein equations of conformal mapping. The
ellipsoidal Korn-Lichtenstein equations, the ellipsoidal Laplace-Beltrami equations.
A 1 ,A 1 ,A 2
For the biaxial ellipsoid
, we shall construct a fundamental solution for the Korn-
Lichtenstein equations of conformal mapping ( 15.5 ) subject to the vectorial Laplace-Beltrami
equations ( 15.7 ). The condition of orientation conservation ( 15.8 ) is automatically fulfilled.
x L = G 11 /G 22 y B ,
E
G 11 /G 22 x B ,
y L =
or
(15.23)
x B = G 22 /G 11 y L , yB = G 22 /G 11 x L ,
G 22 /G 11 x L L + G 11 /G 22 x B B =0 ,
(15.24)
G 22 /G 11 y L L + G 11 /G 22 y B B =0 ,
x L y B − x B y L = G 22 /G 11 x L + G 11 /G 22 x 2 B > 0 ,
(15.25)
Search WWH ::




Custom Search