Geography Reference
In-Depth Information
15-1 The Equations Governing Conformal Mapping
The equations governing conformal mapping and their fundamental solution. The Korn-
Lichtenstein equations, the Laplace-Beltrami equations.
A 1 ,A 1 ,A 2 (ellipsoid-of-
revolution, spheroid, semi-major axis A 1 , semi-minor axis A 2 ) embedded in a three-dimensional
Euclidean manifold E
Here, we are concerned with a conformal mapping of the biaxial ellipsoid
E
3 ij } with a standard canonical metric δ ij , the Kronecker delta of
ones in the diagonal, of zeros in the off-diagonal, namely by means of ( 15.4 ), introducing surface
normal ellipsoidal longitude L and surface normal ellipsoidal latitude B .
3 = { R
A 1 cos B cos L
A 1 cos B sin L
, X 3 = A 1 (1
E 2 )sin B
X 1 =
, X 2 =
1
1
1
,
(15.4)
E 2 sin 2 B
E 2 sin 2 B
E 2 sin 2 B
E 2 := ( A 1 −A 2 ) / ( A 1 )=1 −A 2 /A 1 denotes the first numerical eccentricity squared. According to
[ L, B ]
π/ 2 , + π/ 2], we exclude from the domain [ L, B ] North Pole and South Pole.
Thus, [ L, B ] constitute only a first chart of
[
π, + π ]
×
[
A 1 ,A 1 ,A 2
A 1 ,A 1 ,A 2
basedupontwo
charts, which covers all points of the ellipsoid-of-revolution, is given in all detail by Grafarend
and Syffus ( 1995 ).
Conformal coordinates
E
: a minimal atlas of
E
(isometric coordinates, isothermal coordinates) are constructed
from the surface normal ellipsoidal coordinates
{
x, y
}
as solutions of the Korn-Lichtenstein
equations (conformal change from one chart to another chart: c: Cha-Cha-Cha)
{
L, B
}
x L
x B
=
y L
y B
,
1
G 11 G 22
G 12 G 11
(15.5)
G 22 G 12
G 12
subject to the integrability conditions
x LB = x BL ,y LB = y BL
(15.6)
or
Δ LB x := G 11 x B
+ G 22 x L
G 12 x L
G 12 x B
G 11 G 22
G 11 G 22
=0 ,
G 12
G 12
B
L
(15.7)
Δ LB y := G 11 y B − G 12 y L
+ G 22 y L − G 12 y B
G 11 G 22 − G 12
G 11 G 22 − G 12
=0 ,
B
L
x L x B
y L y B
=( x L y B
x B y L ) > 0
(15.8)
 
Search WWH ::




Custom Search