Geography Reference
In-Depth Information
F 2 ( Φ )+ G 2 ( Φ )d Φ,
f ( Φ )
F 2 ( Φ )+ G 2 ( Φ ) =1
F (0)
F ( Φ )
d f = F ( Φ )
F (0)
Λ 1 Λ 2 =1
Φ
F ( Φ ) F 2 ( Φ )+ G 2 ( Φ )d Φ +const .,
1
F (0)
f (0) = 0
f ( Φ )=
(14.54)
0
f (0) = 0
const . =0 .
The following formulae define the general mapping equations and the left principal stretches for
an equiareal cylindric mapping.
=
, Λ 1 = F (0)
x
y
F (0) Λ
F (0) 0 F ( Φ ) F 2 ( Φ )+ G 2 ( Φ )d Φ
F ( Φ ) ,
1
Λ 2 = F ( Φ )
1
Λ 1 .
F (0) =
(14.55)
14-34 An Example (Mapping the Torus)
A
1 B , especially for the parameter range A>B, 0 <U< 2 π ,
The torus is the product manifold
S
× S
and 0 <V < 2 π .
X
Y
Z
( A + B cos V )cos U
( A + B cos V )sin U
B sin V
( A + B cos Φ )cos Λ
( A + B cos Φ )sin Λ
B sin Φ
=
=
.
(14.56)
The torus is the special surface which is generated by rotating a circle of radius B relative to a
circle of radius A>B around the center of the circle.
F ( Φ )= A + B cos Φ, G ( Φ )= B sin Φ,
U = Λ = arctan Y
Z
X 2 + Y 2
X , V = Φ = arctan
A .
(14.57)
Let us summarize in Box 14.3 the (left) tangent vectors and the (left) coordinates of the metric
tensor of the torus.
Box 14.3 (A special rotational figure: the torus).
Left tangent vectors:
G Λ := X
∂Λ =
E 1 ( A + B cos Φ )sin Λ + E 2 ( A + B cos Φ )cos Λ,
(14.58)
G Φ := X
∂Φ =
E 1 B sin Φ cos Λ
E 2 B sin Φ sin Λ + E 3 B cos Φ,
 
Search WWH ::




Custom Search