Geography Reference
In-Depth Information
C l =J l G r J l =
= R 2
g 2 cos 2 Φ
Λg 2 sin Φ cos Φ + Λg g cos 2 Φ
.
Λg 2 sin Φ cos Φ + Λg g cos 2 ΦΛ 2 g 2 sin 2 Φ + f 2 + Λ 2 g 2 cos 2 Φ
2 Λ 2 gg sin Φ cos Φ
(13.3)
The left principal stretches are determined from the characteristic equation det[C l − Λ S G l ]=0
and G l =diag[ R 2 cos 2 Φ, R 2 ], which leads to the biquadratic equation ( 13.4 ), the solution of which
is provided by ( 13.5 ).
Λ S
Λ S ( Λ 2 g 2 sin 2 Φ + f 2 + g 2 + Λ 2 g 2 cos 2 Φ
2 Λ 2 gg sin Φ cos Φ )+ g 2 f 2 =0 ,
(13.4)
Λ S = 1
2 ( Λ 2 g 2 sin 2 Φ + f 2 + g 2 + Λ 2 g 2 cos 2 Φ
2 Λ 2 gg sin Φ cos Φ )
±
1
4 ( Λ 2 g 2 sin Φ + f 2 + g 2 + Λ 2 g 2 cos 2 Φ
±
2 Λ 2 gg sin Φ cos Φ )
g 2 f 2 =:
(13.5)
=: a
±
b.
The four roots are then given by ( 13.6 ). The postulate of “no area distortion”, i.e. ( 13.7 )now
determines the relationship between the unknown functions f and g as ( 13.8 ).
( Λ S ) 1 =
a + b,
( Λ S ) 1 , 2 =
±
±
(13.6)
( Λ S ) 2 =
± a
( Λ S ) 3 , 4 =
±
b,
( Λ S ) 1 , 2 ( Λ S ) 3 , 4 =
(13.7)
= a + b a
b 2 ! =1 ,
b = a 2
f = g 1
g = f 1 .
(13.8)
We therefore end up with the general mapping equations ( 13.9 ) and the left principal
stretches ( 13.10 ). For the special case f ( Φ ) = 1, the left principal stretches can easily calculated
as ( 13.11 ), which shows that on the equator, Φ =0 , we experience isometry (conformality).
Search WWH ::




Custom Search