Geography Reference
In-Depth Information
X
=[ E 1 , E 2 , E 3 ]
X Λ X Φ
Y Λ Y Φ
Z Λ Z Φ
∂Λ , X
=
∂Φ
A 1 (1 E 2 )sin Φ cos Λ
(1 −E 2 sin 2 Φ ) 3 / 2
1 −E 2 sin 2 Φ
A 1 cos Φ sin Λ
A 1 (1 E 2 )sin Φ sin Λ
(1
+ A 1 cos Φ sin Λ
1 −E 2 sin 2 Φ
=[ E 1 , E 2 , E 3 ]
,
(1.19)
−E 2 sin 2 Φ ) 3 / 2
+ A 1 (1 E 2 )cos Φ
0
(1 −E 2 sin 2 Φ ) 3 / 2
x
∂λ , ∂φ }
as well as the vector field x ( λ, φ ) is locally characterized by the field of tangent vectors
,
the Jacobi map with respect to the “spherical longitude λ ” and the “spherical latitude φ ”, namely
{
x
=[ e 1 , e 2 , e 3 ]
x λ
x φ
∂λ , x
=
y λ
y φ
∂φ
z λ
z φ
(1.20)
−r cos φ sin λ
−r sin φ cos λ
.
=[ e 1 , e 2 , e 3 ]
+ r cos φ cos λ
r sin φ sin λ
0
r cos φ
Next, we are going to identify the coordinates of the left metric tensor G l and of the right
metric tensor G r , in particular, from the inner products
X
∂Λ
=
x
∂λ
= r 2 cos 2 φ =: g 11 ,
A 1 cos 2 Φ
X
∂Λ
x
∂λ
E 2 sin 2 Φ =: G 11 ,
1
X
∂Λ
= X
∂Φ
=: G 12 =0 ,
x
∂λ
= x
∂φ
=: g 12 =0 , (1.21)
X
∂Φ
X
∂Λ
x
∂φ
x
∂λ
X
∂Φ
=
x
∂φ
= r 2 =: g 22 ,
X
∂Φ
A 1 (1 − E 2 ) 2
(1
x
∂φ
E 2 sin 2 Φ ) 3 =: G 22 ,
A 1 cos 2 Φ
A 1 (1
E 2 ) 2
d S 2 =
1 − E 2 sin 2 Φ d Λ 2 +
(1 − E 2 sin 2 Φ ) 3 d Φ 2 ,
d s 2 = r 2 cos 2 φ d λ 2 + r 2 d φ 2 .
Resorting to this identification, we obtain the left metric tensor, i.e. G l , and the right metric
tensor, i.e. G r , according to
G l := G 11
=
G r := g 11
=
G 12
g 12
{
G MN }
=
{
g μν }
=
G 12
G 22
g 12
g 22
= A 1 cos 2 Φ
,
= r 2 cos 2 φ
r 2 .
0
0
1 −E 2 sin 2 Φ
(1.22)
(1 −E 2 ) 2
(1 −E 2 sin 2 Φ ) 3
A 1
0
0
Finally, we implement the isoparametric mapping f = id. Applying the summation convention
over repeated indices, this is realized by
u μ = f μ ( U μ ) ,u μ = δ M U M ,u 1 = U 1 ,u 2 = U 2 = Λ, φ = Φ, J l =I 2 =J r ,
U M
(1.23)
∂U M /∂u μ
∂u μ /∂U M
|
|
=1 > 0 ,
|
|
=1 > 0 ,
f :d u μ = δ M d U M ,
f :d U M = δ μ d u μ ,
(1.24)
 
Search WWH ::




Custom Search