Geography Reference
In-Depth Information
(“spherical isometric latitude”) .
Second standard integral:
E 2
1
d Φ
cos Φ = I second .
(9.40)
E 2 sin 2 Φ
1
E cos Φ
1+ E sin Φ
,
1 − E 2
1
cos Φ =
1
cos Φ
E
2
E cos Φ
(9.41)
E 2 sin 2 Φ
1
1
E sin Φ
1
E 2
d Φ
cos Φ =
E 2 sin 2 Φ
1
=lntan π
4 + Φ
E
2 ln 1+ E sin Φ
E sin Φ =
2
1
ln tan π
E/ 2 := Q
1
4 + Φ
E sin Φ
1+ E sin Φ
(9.42)
2
(“ellipsoidal isometric latitude”) .
The combination of the first and the second standard integral leads us to the celebrated relation
in terms of the integration constants c and k ,namely
q = a ( Q + k ) ,k =ln c, c =exp k ;
ln tan π
= a lntan π
4 + φ
4 + Φ
aE
2
ln 1+ E sin Φ
1 − E sin Φ + a ln c.
(9.43)
2
2
Let us fix the integration constants a, c ,and r . In the so-called “fundamental point” P 0 ( Λ 0 0 ),
we assume r := N ( Φ 0 ), where the curvature form N 0 is defined by ( 9.44 ) (“first proposal of C.
F. Gauss”). Around the “fundamental point” P 0 ( Λ 0 0 ), we assume the Taylor expansion that is
defined by ( 9.45 ) (“second proposal of C. F. Gauss”).
A 1
r = N 0 =
1
,
(9.44)
E 2 sin 2 Φ
ln Λ =ln Λ 0 dln Λ
d φ
d 2 ln Λ
d φ 2
( φ − φ 0 )+ 1
2
( φ − φ 0 ) 2 + ··· .
(9.45)
φ 0
φ 0
The following three postulates specify the above relations. Note that we can summarize the three
postulates in such a way that we postulate a horizontal turning tangent according to Fig. 9.1 .
Search WWH ::




Custom Search