Geography Reference
In-Depth Information
(vi) Lagrange conformal polar azimuthal projection:
Δ
Δ
sin 2
cos 3 2
2 πR 2 = 1
J
sin x
cos 4 2
d x = 1
2
J 6 :=
d x,
4
0
0
sin x =2sin x
2 cos x
2 ,x/ 2= y :d x =2d y,
(5.133)
cos 2 2 1 ,
J 6 = Δ/ 2
0
cos 3 y d y = 1
sin y
= 1
2
1
2 [1 / cos 2 y ] Δ/ 2
0
2 tan 2 Δ
J 6 = 1
2 .
The portrait of the distortion energy density and of the total distortion energy over a spherical cap
(0
60 ) is given by Figs. 5.27 and 5.28 , and Table 5.3 for six polar azimuthal projections
of type (i) equidistant (Postel), (ii) conformal (UPS), (iii) equiareal (Lambert), (iv) gnomonic, (v)
orthographic, and (vi) Lagrange conformal. Contact Appendix A in order to enjoy the ordering
Δ
J 6 <J 5 <J 1 <J 2 <J 4 <J 3 for < 49 , 248502
and
(5.134)
J 6 <J 5 <J 1 <J 2 <J 3 <J 4 for > 49 , 248502 .
Denote for a moment the symbol < by “better”. Then we can make a most important qualitative
statement about the six polar azimuthal projections based upon the ordering of the respective
total distortion energies over a spherical cap, namely
conformal (Lagrange) < orthographic < equidistant (Postel) < conformal (UPS) <
< gnomonic < equal area (Lambert) for < 49 , 248502
and
(5.135)
conformal (Lagrange) < orthographic < equidistant (Postel) < conformal (UPS) <
< equal area (Lambert) < gnomonic for > 49 , 248502 .
Of course, in practice, decision makers for azimuthal map projections do not follow objective
criteria: they prefer the equiareal (Lambert) projection.
5-3 The Pseudo-Azimuthal Projection
Setting up general equations of the mapping “sphere to plane”: the pseudo-azimuthal pro-
jection in the normal aspect (polar aspect).
 
Search WWH ::




Custom Search