Geography Reference
In-Depth Information
Note that all the partial derivatives that are quoted in these boxes can be computed by taking
advantage of the identities d tan x =(1+tan 2 x )d x and d x =dtan x/ (1 + tan 2 x ),whichleadto
the recursive scheme presented in Box 3.22 .
Box 3.22 (Recursive relations for the partial derivatives l ij and b ij up to order three, x ∈
{Λ, Φ ).
(1 + tan 2 x ) 2 tan x
2
∂x
∂A =+
tan x
∂A
2 x
∂A 2 =+
2tan x
1
1+tan 2 x
,
∂A
1
1+tan 2 x
tan x
∂A
+
,
(1 + tan 2 x ) 3 tan x
3
3 x
∂A 3 =
2 1
3tan x
∂A
(1 + tan 2 x ) 2 tan x
2 tan x
∂A 2
+
6tan x
(3.142)
∂A
3 tan x
∂A 3
1
1+tan 2 x
+
,
(1 + tan 2 x ) 2 tan x
tan x
∂A
.
2 x
∂A∂B =+
2 tan x
∂A∂B
1
1+tan 2 x
2tan x
∂B
3-46 Inverse Transformation of Oblique Quasi-Spherical
Longitude/Latitude
X ,Y ,Z }
Let us depart from the representation ( 3.108 ) of oblique Cartesian coordinates
{
in
terms of oblique quasi-spherical longitude/latitude
. The inverse map relates these oblique
Cartesian coordinates to oblique quasi-spherical longitude/latitude:
{
A, B
}
tan A = Y
Y ,
Z
X 2 + Y 2 .
tan B =
(3.143)
As soon as we implement the transformation of normal Cartesian coordinates {X, Y, Z} into
oblique Cartesian coordinates {X ,Y ,Z } of type ( 3.104 )and( 3.105 )aswellasthesurface
normal ellipsoidal longitude/latitude {Λ, Φ} into normal Cartesian coordinates {X, Y, Z} of
type ( 3.129 ), we are led to
X = X cos Ω + Y sin Ω =
A 1
1
=
cos Φ (cos Λ cos Ω +sin Λ sin Ω ) =
(3.144)
E 2 sin 2 Φ
A 1
1
cos Φ cos( Λ − Ω ) ,
=
E 2 sin 2 Φ
Search WWH ::




Custom Search