Geography Reference
In-Depth Information
A 2 = A 1 (1
E 2 ) ,
A 1 (1
E 2 )=
E 2 ) X 2 +[(1
E 2 )cos 2 I +sin 2 I ] Y 2 +[(1
E 2 )sin 2 I +cos 2 I ] Z 2 +
=(1
+2 Y Z E 2 sin I cos I
and
A 1 (1 − E 2 ) =
(3.112)
= X 2 + Y 2 + Z 2
E 2 ( X 2 + Y 2 cos 2 I + Z 2 sin 2 I )+
+2 Y Z E 2 sin I cos I,
A 1 (1
E 2 )
=
R 2
=1 − E 2 (cos 2 A cos 2 B +sin 2 A cos 2 B cos 2 I +sin 2 B sin 2 I
2sin A sin B cos B sin I cos I )
(3.113)
E 2 [cos 2 A cos 2 B +(sin A cos B cos I
sin B sin I ) 2 ]
=1
( 3.109 ) .
End of Proof.
Next,wehavetocomputethe arc length of
1
A 1 ,A 2 , i.e. that part of the oblique ecliptic equator
which ranges from the oblique quasi-spherical longitude zero to a fixed, but arbitrary value A .
E
3-44 The Arc Length of the Oblique Equator in Oblique
Quasi-Spherical Coordinates
In order to compute the length of an arc in the oblique ecliptic equator E A 1 ,A 2 in terms of oblique
quasi-spherical longitude, we are forced to represent the infinitesimal arc length by
d S = d X 2 +d Y 2 B = = R 2 ( A )+ R 1 ( A )d A,
(3.114)
subject to
A 1 1
E 2
R 0 ( A, B =0):= R ( A ):=
1
,
(3.115)
co s 2 I sin 2 A )
E 2 (1
A 1 E 2 1
E 2 cos 2 I sin A cos A
R 1 ( A, B =0):= R 1 ( A ):= 1
1!
d R ( A )
d A
=
,
(3.116)
cos 2 I sin 2 A )] 3 / 2
[1
E 2 (1
such that
S ( A )= A
A =0
R 2 ( A )+ R 1 ( A )d A .
(3.117)
In the following steps, we perform the integration. (i) Series expansion of R ( A ) according to ( 3.120 )
up to order E 6 . (ii) Series expansion of R 1 ( A )=d R/ d A accordingto( 3.121 )uptoorder E 6 . (iii)
Series expansion of R 2 ( A )+ R 1 ( A )accordingto( 3.122 )uptoorder E 6 . (iv) Series expansion of
( R 2 ( A )+ R 1 ( A )) 1 / 2 according to ( 3.125 )uptoorder E 6 .
 
Search WWH ::




Custom Search