Geography Reference
In-Depth Information
+ e 2 0 cos β sin α + e 3 0 sin β.
Transformation
{
e 1 , e 2 , e 3 |O} → {
e 1 0 , e 2 0 , e 3 0 |O}
:
e 1
e 2
e 3
sin φ 0 cos λ 0 sin λ 0 cos φ 0 cos λ 0
sin φ 0 sin λ 0 cos λ 0 cos φ 0 sin λ 0
cos φ 0
e 1 0
e 2 0
e 3 0
=
,
(3.45)
0
sin φ 0
e 1 =+ e 1 0 sin φ 0 cos λ 0 e 2 0 sin λ 0 + e 3 0 cos φ 0 cos λ 0 ,
e 2 =+ e 1 0 sin φ 0 sin λ 0 + e 2 0 cos λ 0 + e 3 0 cos φ 0 sin λ 0 ,
(3.46)
e 3 = e 1 0 cos φ 0 + e 3 0 sin φ 0 ,
x = e 1 x + e 2 y + e 3 z =
= e 1 0 ( x sin φ 0 cos λ 0 + y sin φ 0 sin λ 0 − z cos φ 0 )+
+ e 2 0 ( −x sin λ 0 + y cos λ 0 )+ e 3 0 ( x cos φ 0 cos λ 0 + y cos φ 0 sin λ 0 + z sin φ 0 )=
= r e 1 0 (cos φ cos λ sin φ 0 cos λ 0 +cos φ sin λ sin φ 0 sin λ 0
sin φ cos φ 0 )+
(3.47)
cos φ cos λ sin λ 0 +cos φ sin λ cos λ 0 )+
+ r e 3 0 (cos φ cos λ cos φ 0 cos λ 0 +cos φ sin λ cos φ 0 sin λ 0 +sin φ sin φ 0 )
= r e 1 0 cos β cos α + r e 2 0 cos β sin α + r e 3 0 sin β.
+ r e 2 0 (
Box 3.5 (From the equatorial frame of reference { e 1 , e 2 , e 3 |O} to the meta-equatorial
(oblique) frame of reference { e 1 0 , e 2 0 , e 3 0 |O} : the direct transformation).
(i) The first identity (spherical sine lemma):
x 0
r cos β ,
x 0 = r cos β cos α
cos α =
1
cos β (cos φ cos λ sin φ 0 cos λ 0 +cos φ sin λ sin φ 0 sin λ 0
cos α =
sin φ cos φ 0 ) ,
(3.48)
1
cos β (cos φ sin φ 0 cos( λ − λ 0 ) sin φ cos φ 0 ) .
cos α =
(ii) The second identity (spherical sine-cosine lemma):
y 0
r cos β ,
y 0 = r cos β sin α ⇒ sin α =
1
cos β (
sin α =
cos φ cos λ sin λ 0 +cos φ sin λ cos λ 0 ) ,
(3.49)
1
cos β cos φ sin( λ
sin α =
λ 0 ) .
 
Search WWH ::




Custom Search