Geography Reference
In-Depth Information
Formulation (iv):
G 11 ∂y
+ G 12 ∂y
∂x
∂U =
1
|
∂y
∂W
∂y
∂W
∂y
∂V
∂z
∂U
∂y
∂U
∂z
∂W
∂V
∂W
G l |
+ G 13 ∂y
,
∂z
∂V
∂y
∂V
∂z
∂U
∂U
G 12 ∂y
∂V
+ G 22 ∂y
∂W
∂x
∂V =
1
∂z
∂W
∂y
∂W
∂z
∂V
∂z
∂U
∂y
∂U
∂z
∂W
| G l |
+ G 23 ∂y
∂U
,
∂z
∂V
∂y
∂V
∂z
∂U
(2.45)
G 13 ∂y
+ G 23 ∂y
∂x
∂W =
1
|
∂z
∂W
∂y
∂W
∂z
∂V
∂z
∂U
∂y
∂U
∂z
∂W
∂V
∂W
G l |
+ G 33 ∂y
,
∂z
∂V
∂y
∂V
∂z
∂U
∂U
2 x
2 x
2 x
∂x 2
2 x
2 x
subject to the integrability conditions
∂U∂V =
∂V ∂U ,
∂U∂W =
∂W∂U ,
∂V ∂W =
∂W∂V .
End of Lemma.
Question: “Why did we bother you with the three-
dimensional conformal mapping of a three-dimensional
Riemann manifold to a three-dimensional Euclidean mani-
fold?” Answer: “One of the main reasons is the inability of
the theory of complex manifolds to work conformally with
odd-dimensional real manifolds. Only even-dimensional
real manifolds M
2 n ( R ) can be transformed to complex
manifolds
M
n (
C
)”.
Finally, Lemma 2.6 presents the partial differential equations of a conformeomorphism if it exists
from a left n -dimensional (pseudo-)Riemann manifold M
l of signature l toaright n -dimensional
(pseudo-)Riemann manifold
M
r =E n of signature r.
Lemma 2.6 ( Grafarend and Syffus ( 1998d , p. 293), conformeomorphism).
Equivalent formulations of the equations producing a conformal mapping
M
l
M
r =
E
n are
provided by the following formulations.
Formulation (i):
d x 1 = (d x 2
∧ ...∧ d x n ) .
(2.46)
Formulation (ii):
L, M 1 , ...., M p , N 1 , ..., N p ∈{
1 , ..., n
}
( p = n
1) :
(2.47)
p ! e LM 1 ...M p det [G l ] G M 1 N 1 ...G M p N p ∂x 2
∂U N 1 ... ∂x n
∂U L = 1
∂x
∂U N p ,
 
Search WWH ::




Custom Search