Geography Reference
In-Depth Information
Box 2.2 summarizes the operational procedure for generating a conformal diffeomorphism, also
called conformeomorphism ,
3 , again in terms of exterior calculus. First,
we introduce the differential one-forms, the differential two-forms, and the differential three-
forms. Second, we apply the Hodge star operator (i) to
l
r =
2 μν }
M
M
{ R
=
E
d x etc., (ii) to
(d y
d z ) etc., and
d z ). The columns [ x 1 ,x 2 ,x 3 ] T , [ y 1 ,y 2 ,y 3 ] T ,and[ z 1 ,z 2 ,z 3 ] T may be
considered orthogonal. Third, we represent the expression
(iii) to
(d y
d y
(d y
d z ) as an example explicitly.
3
×
3
×
3 ( L, M 1 ,M 2 ∈{
Again, the three-dimensional permutation symbol e LM 1 M 2 R
1 , 2
}
)asa
three-dimensional array is defined. Fourth, we explicitly compute the expression d x =
(d y
d) z ,
3
l
3
3 : compare with
the Zund equations of a three-dimensional conformal mapping
M
M
r =
E
Lemma 2.5 .
3
l
r =
3 μν
3 , exterior calculus).
Box 2.2 (Conformal diffeomorphism
M
M
{ R
}
=
E
Differential frame:
d x = x 1 d U + x 2 d V + x 3 d W
(i) d y = y 1 d U + y 2 d V + y 3 d W
d z = z 1 dU + z 2 dV + z 3 d W
(one-forms) ,
(2.34)
(ii) d y
d z, d z
d x, d x
d y, (two-forms) ,
(iii) d x
d y
d z
(three-form) .
Hodge star operator:
(i) d x =d y ∧ d z,
d y =d z ∧ d x,
d=d x ∧ d y ;
(ii) (d y ∧ d z )=d x,
(d z ∧ d x )=d y,
(d x ∧ d y )=d z ;
(2.35)
(iii) (d x ∧ d y ∧ d z )=1 .
Example :
L, M 1 ,M 2 ,N 1 ,N 2 ∈{
1 , 2 , 3
}
:
3
e LM 1 M 2
∂y
∂U N 1
∂z
G M 1 N 1 G M 2 N 2
∂U N 2 d U L .
(d y
d z )=
|
G l
|
(2.36)
L,M 1 ,M 2 ,N 1 ,N 2 =1
Permutation symbol:
+1 for an even permutation of the indices L, M 1 ,M 2
∈{
1 , 2 , 3
}
e LM 1 M 2 =
1 for an odd permutation of the indices L, M 1 ,M 2
∈{
1 , 2 , 3
}
.
(2.37)
0 th rw e
Zund equations of a two-dimensional conformal diffeomorphism
in exterior calculus:
3
x M d U M =
d x =
M =1
3
e LM 1 M 2
∂y
∂U N 1
∂z
G M 1 N 1 G M 2 N 2
∂U N 2 d U L =
=
|
G l |
(d y
d z )
(2.38)
L,M 1 ,M 2 ,N 1 ,N 2 =1
 
Search WWH ::




Custom Search