Digital Signal Processing Reference
In-Depth Information
To determine θ opt , another step is possible. In effect, from [9.5] we immediately
obtain:
σ S =cos 2 ( θ ) σ 2 X 1 +2cos( θ )sin( θ ) ρ (0) σ X 1 σ X 2 +sin 2 ( θ ) σ 2 X 2
σ S =sin 2 ( θ ) σ 2 X 1
2cos( θ )sin( θ ) ρ (0) σ X 1 σ X 2 +cos 2 ( θ ) σ 2 X 2
or:
c + 1
c
+ y ( θ )
2
σ S
σ X 1 σ X 2
= c cos 2 ( θ )+2 ρ (0) cos( θ )sin( θ )+ 1
c sin 2 ( θ )= 1
σ S =
2
c + 1
c
σ S
σ X 1 σ X 2
2 ρ (0) cos( θ )sin( θ )+ 1
c cos 2 ( θ )= 1
y ( θ )
2
σ S =
= c sin 2 ( θ )
2
with:
y ( θ )=( c
1 /c )cos(2 θ )+2 ρ (0) sin(2 θ )
Since:
∂y ( θ )
∂θ
=
2( c
1 /c )sin(2 θ )+4 ρ (0) cos(2 θ )
the function y ( θ ) has an extremum when:
θ = 1
2 arctan 2 ρ (0)
c
1 /c
1 /c , which leads to taking
θ modulo π/ 2 as in equation [9.6]. Knowing θ opt , we can deduce s 1 ( n ) and s 2 ( n ).
The four possible cases follow the sign of ρ (0) and of c
9.3.2. In the frequency domain
The procedure shown earlier for the time domain can be realized for each tile
in the time/frequency decomposition. The angles θ opt ( b ) for b =1
···
B must be
determined. These depend only on:
c ( b )= ||
X 1 ( b )
||
||
X 2 ( b )
||
and:
= X t
( b ) X 2 ( b )
X t
1
( b ) X 2 ( b )+ X t
( b ) X 1 ( b )
ρ (0 ,b )= 1
2
1
2
||
X 1 ( b )
|| ||
X 2 ( b )
||
||
X 1 ( b )
|| ||
X 2 ( b )
||
X t
1
( b ) X 2 ( b )
|
|
ρ (0 ,b )=
cos[ICPD( b )]
||
X 1 ( b )
|| ||
X 2 ( b )
||
ρ (0 ,b ) = ICC( b )cos[ICPD( b )]
The three inter-channel indices given in [9.4] are therefore sufficient to calculate
the monophonic signal s ( n ).
Search WWH ::




Custom Search